Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Циклических элементов


Реакция протекает в полной темноте и не требует присутствия веществ, являющихся источником свободных радикалов. Инкубационный период отсутствует, и, например, для этана реакция проходит гладко уже при —80°. Скорость реакции настолько- велика, что при хорошем контакте жидкости с кислородом она зависит только от быстроты его подачи. Пролан, бутан и мепазин реагируют легко; али-циклические углеводороды также вступают в эту реакцию. Ароматические углеводороды инертны, но их примеси к парафиновым углеводородам не тормозят процесса.

киг ения масел их вязкость возрастает. Остаточные масла более вязкие, чел- дистиллятные. Парафиновые углеводороды нормального строения характеризуются наименьшей вязкостью. С разветвлением цепи их вязкость возрастает. Циклические углеводороды значительно более вязкие, чем парафиновые. При одинаковой структуре вязкость нафте — HOI выше, чем аренов. Наибольшую вязкость имеют смолисто — асфальтеновые вещества. Важнейшей характеристикой масел является изменение их вязкости с температурой, оцениваемой коэффициентом вязкости или индексом вязкости , вычисляемой по формуле

Порционная полача растворителя является эффективным спо — собсм создания благоприятных гидродинамических условий для роста кристаллов парафинов путем регулирования вязкости и кон — центра ц и и фаз дисперсной системы в процессах депарафинизации и об.замасливания. При порционной подаче растворителя создаются условия для раздельной кристаллизации высоко- и низкоплавких парафинов. При первом разбавлении сырья — часть растворителя подается в количестве, достаточном для образования первичных наиболее крупных кристаллов из высокоплавких парафинов нормального строения. При дальнейшем охлаждении раствора с подачей следующей порции растворителя осуществляется кристаллизация па первичных кристаллах более низкоплавких компонентов, в состан которых могут входить низкомолекулярные н-алкапы, изоалкапы и циклические углеводороды. Такой способ подачи растворителя позволяет не только повысить скорость фильтрования и выход депарафинизата, но и проводить процесс с большей скоростью охлаждения.

Комплекс с карбамидом могут образовывать и длинноцепные углеводороды с циклическими структурами. Так, при наличии одной метильной боковой группы для образования комплекса требуется не менее 10, а в случае этильной — не менее 24 атомов углерода в нормальной цепи. Алкилзамещенные циклические углеводороды способны образовывать комплекс с карбамидом при наличии в них алкильной цепи из 20 — 25 и более атомов углерода. Следовательно, для образования комплекса важны не химическая природа, а конфигурация и размеры молекул углеводородов.

При равном молекулярном весе, точнее при равном числе атомов углерода в молекуле, наименьшей вязкостью характеризуются алканы. При этом повышение разветвленности алкильных цепей ведет к возрастанию определяющей вязкости. Циклические углеводороды обладают более высокими вязкостями, причем нафтеновые кольца повышают вязкость углеводорода в большей мере, чем ароматические; из нафтеновых колец больше повышают вязкость шестичленные кольца, чем пятичленные. Систематизированные примеры зависимости определяющей вязкости углеводородов синтетических масел от их структуры помещены в монографии А. И. Динцеса и А. В. Дружининой по синтетическим маслам.

Следовательно, для получения масел с низкими температурами вязкостного застывания желательно иметь алканы наименее разветвленной структуры, малоциклические углеводороды

Из углеводородов различных структур наиболее устойчивые комплексы дают углеводороды, имеющие прямую цепь. Разветвление углеводорода и включение в него колец препятствуют образованию комплекса. Для углеводородов различных структур имеется минимальная длина алкильной цепи, при которой может образоваться комплекс. Так, к-алканы способны давать комплексы при длине цепи, состоящей не менее чем из шести атомов углерода; алканы с одной метильной боковой группой способны образовать комплексы при наличии в боковой цепи не менее 10—13 атомов углерода, углеводороды с боковой этильной группой должны иметь в прямой цепи не менее 24 атомов углерода, а углеводороды с более длинными боковыми цепями или с несколькими цепями или кольцами не образуют комплексы вообще . Отдельные углеводороды, неспособные сами по себе образовывать комплекс, например 3-метилгептан, в присутствии комплексо-образующих углеводородов могут также дать комплекс .

Предположения о возможности образования в условиях гидрогенолиза в результате диссоциативной адсорбции ди-, три- и даже тетраадсорбированных соединений, как нам кажется, также несколько проблематичны. В частности, недостаточно убедительна аргументация об образовании в условиях реакции ненасыщенных а,3,у-триадсорбированных соединений я-аллильного типа. Существование подобных промежуточных я-аллиль-ных соединений предположили при рассмотрении адсорбции и превращений на поверхности катализатора ненасыщенных соединений . Далее, основываясь на результатах D—Н-обмена, эти рассуждения были распространены и на насыщенные, в первую очередь на циклические, углеводороды. Основным критерием при этом явились результаты, полученные при изучении D—Н-оТшена и конфигурационной изомеризации ди- и полиалкилциклопентанов . Между тем протекание последней реакции отнюдь не обязательно связывать с диссоциативным механизмом, приводящим к ненасыщенным поверхностным соединениям. Как показано {168, 169)));, более логичной является ассоциативная схема, сходная с механизмом вальденовского 5^-обращения. В связи с этим образование в условиях гидрогенолиза циклоал-канов промежуточных а.р.-у-триадсорбированных я-ал-лильных соединений представляется не вполне убедительным. Конечно, это не исключает возможности образования подобных ненасыщенных промежуточных соединений из циклопентанов и, особенно, из циклогекса-нов в более жестких условиях . Однако протекание в избытке водорода гидрогенолиза циклопентанов с промежуточной диссоциативной адсорбцией представляется нам недо-, статочно обоснованным.

Наиболее важные из полученных результатов касаются числа ароматических и циклопарафиновых колец в молекулах смазочных масел и соединения ароматических и циклопарафиновых колец в одной молекуле. В исследованном масляном сырье из нефти Понка число колец изменялось от 1 до 4. Ароматические кольца, связанные с циклопарафиновыми углеводородами, образуют нафтеново-ароматические углеводороды. Предположение, что циклические углеводороды представляют собой смеси в соответствую-'щих пропорциях ароматических и циклопарафиновых углеводородов, исключается. Такие смеси легко разделяются фракционировкой и обработкой растворителями, так как ароматические и циклопарафиновые углеводороды в однородных фракциях имеют различные температуры кипения и разную растворимость.

Когда хлористый алюминий применялся в виде суспензии в пентане как разбавителе . Сопряженные алифатические и циклические диолефины, которые присоединены к ароматическим кольцам, вероятно, очень активны . Несопряженные диолефины относительно стабильны , однако в размерах, зависящих от структуры, простые олефины также вступают в реакции смолообразования благодаря тому факту, что в смесях углеводородов окисление какого-либо активного компонента способствует окислению другого, который в условиях автоокисления сам по себе не может прореагировать в сколько-нибудь заметных количествах . Поэтому количество смолы в крекинг-дистиллятах будет значительно больше, чем это можно объяснить только наличием диолефинов. Некоторые предельные циклические углеводороды, такие, как 1,2-диметил-циклопентан и 1,2-диметилциклогексан, газообразным кислог родом окисляются медленно . При нагревании в атмосфере кислорода 1,1,3-триметилциклопентана при 100° С и давлении кислорода около 9 кГ/см2 образуется и выделяется значительное количество жидких смол.

гибридной структуры. На основании этих данных можно с достаточной степенью достоверности сделать заключение и об отдельных закономерностях, связывающих некоторые свойства этого типа углеводородов с их химическим строением. В табл. 24 приведены основные свойства некоторых синтетических углеводородов С22~Сво зависящие от степени цикличности их, т. е. от доли атомов углерода, входящих в состав циклических элементов структуры молекулы. В этой таблице даны лишь три углеводорода , молекулы которых содержат структурные элементы всех трех основных гомологических рядов углеводородов.

цепями к их. гидрюрам вязкость повышается . Таким образом, нельзя сделать безоговорочно общего вывода о понижении вязкости поликонденсированных ароматических углеводородов при их гидрировании. Наличие заместителей в таких конденсированных ароматических системах, их количество, величина, строение и положение в системе могут оказать очень существенное влияние. Полученные новые экспериментальные данные на примерах 1,3-ди-2-пентилпропана и 2,4,6-триметилоктадецилбензола показывают, что в случае высококипящих нефтяных фракций снижение вязкости при гидрировании может быть обусловлено и присутствием парафино-ароматических гибридных структур углеводородов, содержащих в молекуле метилированные бензольные кольца. Эффект снижения вязкости при гидрировании концентратов поликонденсированных ароматических углеводородов из высокомолекулярных фракций нефти может, вероятно, проявиться и при наличии в таких многокомпонентных смесях значительных количеств углеводородов гибридных типов, в молекулах которых присутствуют одновременно конденсированные ароматические ядра и метилированные бензольные кольца. Соотношение этих структурных элементов может варьировать в широких пределах в зависимости от химической природы нефтей. Однако содержание алифатических атомов углерода редко снижается до 30—35% от их общего-числа, в большинстве же случаев оно составляет 50—65%. Среди циклических элементов структуры преобладают моноциклические и конденсированные бици-клические ароматические ядра и их гидрюры, а также пятичленные кольца различной степени замещения. Содержание ароматических и гидроароматических циклических элементов структуры может колебаться в отдельных фракциях в очень широких пределах в зависимости от химического характера нефти. Этим распределением атомов углерода в структурных элементах углеводородных смесей и определяется принципиальная возможность разделения их на компоненты более или менее однородные по структурно-групповому составу. Для иллюстрации этого положения приведем два примера.

Для выяснения химической природы высокомолекулярных углеводородов нефти гибридного строения с преобладанием циклических элементов структуры, содержащих в молекуле конденсированное бициклоароматическое ядро, был применен метод каталитического гидрирования в сравнительно мягких температурных условиях. В этом случае происходит полное гидрирование ароматических колец или же частичное гидрирование нафталинового ядра до тетралинового. При этом общее количество колец уменьшается, а число циклопарафиновых колец увеличивается. Результаты гидрирования высокомолекулярных конденсированных бицик-лоароматических углеводородов радченковской и ромашкинской нефтей приведены в табл. 40.

Все полученные данные свидетельствуют о большом удельном весе циклических элементов структуры в молекулах нефтяных смол. Наиболее вероятным представляется следующий характер построения молекул нефтяных смол. Основными структурными элементами

ных закономерностях, связывающих некоторые свойства этого типа углеводородов с их химическим строением. В табл. 28 дана сводка основных свойств нескольких десятков синтетических углеводородов Czz — Ceo в зависимости от степени цикличности их, т. е. от доли атомов С, входящих в состав циклических элементов структуры молекулы. В этой таблице содержится лишь три углеводорода , молекулы которых содержат структурные элементы всех трех основных гомологических рядов углеводородол.

В табл. 28 приведены данные о смешанных углеводородных структурах, синтезированных с целью моделировать типы углеводородов, составляющих основную пасть смазочных масел. Попятно поэтому, что здесь предпочитали такие структуры, у которых преобладают алифатические атомы С, по мало обращали внимания на остальные атомы молекулы, относящиеся к циклической структуре . В табл. 29 суммированы данные о синтезированных нами: углеводородах, количество атомов С разного тина в молекуле которых колебалось в широких пределах. Синтез таких разнообразных форм" высокомолекулярных углеводородов гибридного строения вполне оправдан, так как в настоящее время уже подтверждено многочисленными данными но исследованию высокомолекулярной части нефтей, начиная с масляных фракций, что углеводородные структуры этой части нефти состоят преимущественно из молекул, в состав которых входят одновременно атомы С парафиновой, циклопара-финовой и ароматической природы. Соотношение этих структурных элементов может варьировать в широких пределах в зависимости от химической природы нефтей, однако содержание алифатических атомов С редко снижается до 30—35 "о от общего числа атомов С. Среди циклических элементов структуры преобладают моноцпклические и конденсированные бицяклическпе ароматические ядра и их гидрюры, а также пятпчлешше кольца различной степени замощения. Содержание ароматических и гидроароматпческпх циклических элементов структуры может колебаться в отдельных фракциях в зависимости от химического характера нефти в очень широких пределах. Этим распределением атомов С в структурных элементах углеводородных смесей и определяется принципиальная возможность разделения их на более или менее однородные по структурно-групповому составу компоненты. Для иллюстрации этого положения приведем два примера.

Все полученные данные свидетельствуют о большом удельном весе циклических элементов структуры в молекулах нефтяных смол. Наиболее вероятным представляется следующий характер построения молекул нефтяных смол. Основными структурными элементами молекулы являются конденсированные циклические системы, в состав которых входят ароматические, циклопарафиновые и гетероциклические кольца. Эти конденсированные циклические системы соединены между собой сравнительно короткими алифатическими мостиками и имеют по нескольку алифатических, реже циклических, заместителей в цикле. Конденсированные структурные элементы молекул смол н высокомолекулярных углеводородов, не подвергавшихся термической обработке сырых нефтей, содержат преимущественно два конденсированных кольца, нолицикли-ческие же конденсированные системы, если и присутствуют, то лишь is небольших количествах.

В настоящее время уже имеется некоторое количество надежных данных о свойствах синтетических индивидуальных высокомолекулярных углеводородов гибридной структуры. На основании этих данных можно с достаточной степенью достоверности сделать заключение и об отдельных закономерностях, связывающих некоторые свойства этого типа углеводородов с их химическим строением. В табл. 24 приведены основные свойства некоторых синтетических углеводородов С22—С60, зависящие от степени цикличности их, т. е. от доли атомов углерода, входящих в состав циклических элементов структуры молекулы. В этой таблице даны лишь три углеводорода , молекулы которых содержат структурные элементы всех трех основных гомологических рядов углеводородов.

)денсированных ароматических углеводородов из высокомолекулярных фракций нефти может, вероятно, проявиться и при наличии в таких многокомпонентных смесях значительных количеств углеводородов гибридных типов, в молекулах которых присутствуют одновременно конденсированные ароматические ядра и метилированные бензольные кольца. Соотношение этих структурных элементов может варьировать в широких пределах в зависимости от химической природы нефтей. Однако содержание алифатических атомов углерода редко снижается до 30—35% от их общего числа, в большинстве же случаев оно составляет 50—65%. Среди циклических элементов структуры преобладают моноциклические и конденсированные бици-клические ароматические ядра и их гидрюры, а также пятичленные кольца различной степени замещения. Содержание ароматических и гидроароматических циклических элементов структуры может колебаться в отдельных фракциях в очень широких пределах в зависимости от химического характера нефти. Этим распределением атомов углерода в структурных элементах углеводородных смесей и определяется принципиальная возможность разделения их на компоненты более или менее однородные по структурно-групповому составу. Для иллюстрации этого положения приведем два примера.

 

Центровые отверстия. Цеолитного катализатора. Целесообразность получения. Цианистых соединений. Циклические диолефины.

 

Главная -> Словарь



Яндекс.Метрика