Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Экономичности двигателей


Склонность бензинов к калильному зажиганию. При полной оценке качества автобензинов определяют также их способность к калильному зажиганию — косвенный показатель склонности к нагарообразованию. Калильное число — показатель, характеризующий вероятность возникновения неуправляемого воспламенения горючей смеси в цилиндрах двигателя вне зависимости от момента подачи искры свечей зажигания. Оно связано с появлением "горячих" точек в камере сгорания . Калильное зажигание делает процесс сгорания неуправляемым. Оно сопровождается снижением мощности и топливной экономичности двигателя и т.д. Калильное зажигание принципиально отличается от детонационного сгорания. Сгорание рабочей смеси после калильного зажигания может протекать с нормальными скоростями без детонации. КЧ выше у ароматических углеводородов и низкое у изопарафинов. ТЭС и сернистые соединения повышают склонность бензина к отложениям нагара. Основные направления борьбы с калильным зажиганием — это снижение содержания ароматических углеводородов в бензине, улу1 шение полноты сгорания путем совершенствования конструкций ДВС и применение присадок .

Ускоренное окисление бензинов при применении в карбюраторных двигателях вызывает образование смолистых отложений во впускном трубопроводе. Здесь благодаря действию воздуха, повышенной температуры и металла создаются наиболее благоприятные условия для окисления бензина, причем происходит энергичное радикально-цепное окисление не только углеводородной части бензина, но и ранее накопившихся смолистых веществ с образованием продуктов, не растворяющихся в бензине. Отложения во впускном трубопроводе уменьшают его проходное сечение и затрудняют подвод тепла к рабочей смеси. Вследствие этого ухудшается наполнение цилиндров и затрудняется испарение топлива, что, в свою очередь, приводит к снижению мощности и экономичности двигателя. Состав отложений по ходу впускного тракта не постоянен. Отложения, образующиеся непосредственно за карбюратором, в основном состоят из асфальте-нов. В отложениях на тюльпанах впускного клапана всего 3— 5% асфальтенов, а 2/з отложений составляют карбены и карбо-иды .

Преждевременное воспламенение горючей смеси сопровождается снижением мощности и топливной экономичности двигателя, а в ряде случаев приводит к прогоранию и механическому разрушению поршней, залеганию колец и другим механическим повреждениям деталей цилиндро-поршневой группы . Оценку склонности бензина к калильному зажиганию проводят по двум, принципиально разным методикам.

Таким образом, калильное зажигание нарушает нормальное протекание процесса сгорания, делает его неуправляемым, приводит к снижению мощности и ухудшению экономичности двигателя. Интенсивное калильное зажигание вызывает прогорание и механическое разрушение поршней, залегание поршневых колец, ~обгорание кромок поршней и клапанов, разрушение подшипников, обрыв шатунов и поломку коленчатых валов. В последнее время зарубежные специалисты расценивают борьбу с преждевременным воспламенением в двигателях Рис. 25. Калильные свойства углеводородов : с ВЫСОКОЙ степенью сжатия

Отложения, образующиеся во впускном трубопроводе, обладают плохой теплопроводностью, что затрудняет подвод тепла к рабочей смеси и тем самым ухудшает условия испарения топлива. Огложения такого типа, образующиеся на штоках и тарелках впускных клапанов, нарушают нормальную работу клапанного механизма и могут привести к зависанию клапанов. Все эти явления сопровождаются снижением мощности и экономичности двигателя.

При окислении нестабильных углеводородов и неуглеводородных примесей в бензинах образуются высокомолекулярные смолистые вещества. При испарении бензина в диффузоре карбюратора и впускном трубопроводе смолистые соединения могут отлагаться на стенках и под действием высокой температуры превращаться в твердые отложения. Слой таких отложений на стенках впускного трубопровода создает дополнительное сопротивление для горючей смеси, затрудняет подвод тепла к смеси и ухудшает условия испарения. Подобные отложения на штоках и тарелках клапанов нгзру-шают работу клапанного механизма и могут привести к «зависанию» клапанов. Все эти явления сопровождаются снижением мощности и экономичности двигателя. -"—' Для оценки склонности бензинов к образованию отложений во впускной системе разработаны специальные лабораторные методы. Суть методов состоит в определении массы смолистых веществ, остающихся в стаканчиках после испарения бензина в струе воздуха или в струе водяного пара . Смолы, определенные такими методами, называют фактическими, т. е. присутствующими в бензине в данное время. Между содержанием фактических смол в бензине и массой отложений, образующихся во впускном трубопроводе двигателя, установлена прямолинейная зависимость {ртгсГТ). В связи с тем, что содержание фактических смол во время хранения возрастает, установлены две нормы — одна на g зво месте производства бензина, другая ^ 2дА

господство в воздухе, стремление летать выше, дальше и быстрее всех определили бурное развитие двигателя этого типа. Совершенствование двигателя шло по пути снижения его удельного веса , повышения литровой мощности , увеличения общей мощности, повышения к.п.д. и экономичности двигателя.

во впускном трубопроводе двигателя и на клапанах, они приводят к падению мощности и экономичности двигателя, а иногда и к полной его аварийной остановке .

рючей смесью в камеру сгорания двигателя. В. в. применяется как средство подавления детонации в поршневых авиационных и автомобильных двигателях; дает возможность применять топливо с октановым числом примерно на 10—15 единиц ниже, чем у стандартного топлива, а при стандартном топливе повышать мощность двигателя примерно на 10—15%. В. в. может быть использован также для повышения экономичности двигателя за счет обеднения смеси или для устранения перегрева двигателя и понижения содержания антидетонатора в топливе.

Детонация вызывает резкое уменьшение мощности и экономичности двигателя и действует разрушительно на ряд основных деталей. Борьба с детонацией прежде всего является борьбой за рациональную организацию сгорания топлива, в которой проблема подбора топлива играет решающую роль в качестве одного из наиболее эффективных методов уменьшения склонности двигателя к детонации. Чрезвычайная сложность явления детонации обусловила то, что, несмотря на огромное число исследований, посвященных этому явлению, природа его до сих пор еще не вполне установлена, как равно еще. недостаточно учтена степень влияния на детонацию различных факторов. Несомненно, что детонация представляет собою особый характер протекания сгорания в двигателе, сопровождающегося очень быстрым воспламенением горючей смеси и связанной с этим большой скоростью выделения тепловой энергии. Переход нормального сгорания в детонацию может быть связан не только с громадным увеличением скорости протекания реакций, но также и с изменением характера реакций сгорания. Процесс детонации включает одновременно достаточно быстрое протекание реакций, обусловливающих бурное выделение энергии, и связанные с этим физические явления, влияющие как на состояние рабочего тела, так и на протекание самих исходных реакций. Явление детонации, обусловленное процессами, происходящими в газах, зависит почти от всех параметров работы двигателя, так как они отражаются на характере этих процессов, воздействуя или непосредственно на химический состав горючей смеси, или на ее термическое

ких фракции увеличивается давление сгорания, двигатель работает более жестко. В то же время утяжеление топлива ухудшает условия распиливания, уменьшает скорость образования рабочей смеси, приводит к повышенному дымлению и снижению экономичности двигателя. Оптимальный фракционный состав диктуется конструктивными особенностями дизелей и условиями их эксплуатации. Так, стандартом на дизельное топливо для автотракторных, тепловозных и судовых дизелей установлены следующие температуры перетопки 50% топлива: летнего—не выше 2?0°С, зимнего —не выше 250 °С, арктического — не выше 240 °С.

Совершенствование ВРД и реактивных самолетов всегда было направлено на дальнейшее увеличение высоты и скоростей полета, повышение моторесурса, надежности и экономичности двигателей, обеспечение безопасности полетов. В зависимости от развиваемых скорости и высоты полета принято классифицировать ВРД и соответственно топлива на два типа: для дозвуковых и сверхзвуковых реактивных самолетов.

Представленные в табл. 9 данные свидетельствуют о том, что углеводороды и углеводородные топлива лишь незначительно различаются по теплоте сгорания, поэтому повышение мощности или экономичности двигателей за счет использования бензинов с каким-то повышенным «энергозапасом» не представляется возможным. Каких-либо присадок или добавок, резко повышающих теплоту сгорания, пока не найдено. Для некоторых специальных целей теплоту сгорания углеводородных топлив увеличивают за счет использования индивидуальных углеводородов ацетиленового ряда, добавления металлических суспензий, боргидридов и т. п. Однако такие способы слишком дороги, ограничены ресурсами и поэтому вряд ли

Стремление к более полному использованию детонационной стойкости топлива и улучшению топливной экономичности двигателей на частичных нагрузках привело к созданию ряда конструкций дви-, гателей с переменной степенью сжатия . Предлагаемые конструкции предусматривают увеличение степени сжатия двигателя при работе на частичных нагрузках, когда это не лимитируется детонацией. К сожалению, конструктивные усложнения, вводимые в двигателях с переменной степенью сжатия, пока столь велики, что они не компенсируются получаемыми преимуществами.

Образование нагара в цилиндрах приводит к снижению мощности и топливной экономичности двигателей и сокращает срок их службы. 'Уменьшение нагарообразования может быть достигнуто улучшением качества применяемых топлив, совершенствованием

камерах других типов, может оставаться на уровне 100— 130 кг,'см2. Экономичность этих двигателей приближается к экономичности двигателей с неразделенной камерой.

В зависимости от функционального назначения и условий эксплуатации техника комплектуется двигателями внутреннего сгорания с разными технико-эксплуатационными параметрами и мощностью — карбюраторными, дизельными, воздушно-реактивными, газотурбинными. В результате определяется объем потребления моторных топлив по их видам и качественной характеристике— автомобильные и авиационные бензины, реактивные, дизельные, моторные , газотурбинные топлива. Качественные требования к этим топливам функционально зависят от условий эксплуатации техники, в том числе природно-климатических, и степени форсирования двигателей. Потребность в моторных топливах даже при условии роста объемов работ и парка технических средств может быть снижена за счет улучшения топливной экономичности двигателей и технических средств .

В связи с этим в ведущих капиталистических странах — крупных продуцентах автомобилей — в период энергетического кризиса был широко развернут комплекс научно-технических работ по повышению топливной экономичности двигателей и автомобиля в целом. Эти работы ведутся в следующих основных направлениях: повышение эффективного к. п. д. двигателя и трансмиссии, снижение собственной массы автомобиля, применение электронной системы контроля режима работы двигателя, уменьшение аэродинамического сопротивления, снижение сопротивления качению. Большое значение придается также мастерству вождения автомобиля, качеству автомобильных дорог и оптимальной организации рабочих процессов при эксплуатации.

Карбюраторная система приготовления смеси претерпела длительный путь развития и усовершенствования отдельных узлов вплоть до применения систем современных многокамерных карбюраторов. Относительная простота конструкции и технического обслуживания карбюратора, высокая эксплуатационная надежность все еще обусловливают массовое применение его в автомобильной технике. Однако в связи с необходимостью повышения топливной экономичности двигателей и уменьшения их экологической опасности в последние годы электронная промышленность освоила микросхемы и микропроцессоры для создания надежного и оптимального дозирования топлива на всех режимах работы двигателя.

Представленные в табл. 5.1 данные свидетельствуют о том, что углеводороды и углеводородные топлива лишь незначительно различаются по теплоте сгорания, поэтому повышение мощности или экономичности двигателей за счет использования бензинов с каким-то повышенным «энергозапасом» не представляется возможным. Каких-либо присадок или добавок, резко

Стремление к более полному использованию детонационной стойкости топлива и улучшению топливной экономичности двигателей на частичных нагрузках привело к созданию ряда конструкций двигателей с переменной степенью сжатия. Предлагаемые конструкции предусматривают увеличение степени сжатия двигателя при работе на частичных нагрузках, когда это не

Ужесточение экологических требований к качеству смазочных материалов в первую очередь сказалось на стремлении эксплуатационников к выбору высококачественных моторных масел с повышенным ресурсом для снижения их удельного расхода, увеличения сроков смены и снижения содержания токсичных компонентов в выхлопных газах автомобильных двигателей. Высокие темпы дизелизации транспорта привели к качественному обновлению ассортимента потребляемых масел, не увеличив объема их производства. Формулирование требований к качеству смазочных материалов исходит, таким образом, из необходимости повышения экономичности двигателей и снижения экологической опас ности при их эксплуатации.

 

Экстрактами селективной. Экстрактивная кристаллизация. Экстрактивной перегонке. Экстрактных растворов. Экстрактов фенольной.

 

Главная -> Словарь



Яндекс.Метрика