|
Главная -> Словарь
Индукционного взаимодействия
Индукционное взаимодействие. Установлено, что растворители, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и ела — боасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкильными цепями . Под влиянием электростатического поля растворителя в таких молекулах масляной фракции возникает деформация внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационно — му взаимодействию и переходят в раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент ци пропорционален напряженности поля Е, то естьц =осЕ, где а характеризует степень поляризуемости индуцированной молеку — лы.
Сила индукционного взаимодействия, как и у ориентацион — ного, обратно пропорциональна г6, поэтому оно также короткодействующее. Поскольку температура не влияет на поляризуемость, индукционное взаимодействие, в отличие от ориентационного, не зав 1сит от температуры.
Индукционное взаимодействие. В случае растворения двух,веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно заряженных частиц смещается по отношению к ядру на расстояние /, что проводит к возникновению индуцированного дипольного момента ц,и в молекулах неполярного вещества . Затем происходит ориентация' полярных молекул и .молекул, в которых индуцирован дипольный момент. Чем больше этот момент, тем сильнее взаимодействие молекул. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, т. е. от значения
Индукционное взаимодействие. В случае растворения двух веществ, одно из которых полярно, а другое неполярно, имеет место взаимодействие индуцированных диполей в неполярных молекулах и постоянных диполей молекул растворителя. Под действием электростатического поля полярных молекул происходит изменение электронной структуры молекул неполярного вещества. При этом центр тяжести отрицательно заряженных частиц смещается по отношению к ядру на расстояние /, что проводит к возникновению индуцированного дипольного момента ци в молекулах неполярного вещества . Затем происходит ориентация полярных молекул и молекул, в которых индуцирован дипольный момент. Чем больше этот момент, тем сильнее взаимодействие молекул. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, т. е. от значения
Последний член уравнения — KeR~6 — характеризует ван-дер-ваальсовскос притяжение молекул, являющееся результатом действия ориентационных, индукционных и дисперсионных сил. Константа межмолекулярного притяжения Кб в общем случае включает три составляющие, описывающие соответственно взаимодействие двух постоянных диполей , диполя с неполярной молекулой и взаимодействие двух неполярных молекул
здесь i)i2 отражает индукционное взаимодействие компонентов 1 и 2, параметры К\, т{ и \\'ч? можно определить для данной температуры п растворителя. Между параметрами iii2 и T((( для углеводородов различных классов установлены корреляции •ф12=Ктг . Значение /С в интервале температур 273 — 373 К составляет 0,396 для алканов и циклоалканов, 0,450 — для аренов (((71 1. Следует заметить, что возможность применения уравнения , позволяющего описать концентрационные зависимости термодинамических функций, весьма ограничена ввиду того, что значения фа зависят от состава раствора.
напряженности поля постоянного диполя, а также от поляризуемости неполярной молекулы. Индукционное взаимодействие понижает потенциальную энергию системы из двух молекул и способствует ее упрочнению.
Энергия индукционного взаимодействия убывает при увеличении расстояния между молекулами и пропорциональна шестой степени величины этого расстояния. Ориентация наведенного диполя не зависит от температуры системы, а определяется лишь направлением постоянного диполя. Индукционное взаимодействие неаддитивно в отношении понижения суммарной энергии системы.
Дисперсионное взаимодействие, как правило, вносит наиболее существенный вклад в суммарную энергию взаимодействия в случае проявления дальнодействую-щих сил. При этом ориентационное взаимодействие значительно только в случае полярных молекул, а индукционное взаимодействие обычно проявляется наиболее слабо.
Водородная связь образуется путем электростатического и донорно-акцепторно-го взаимодействия. Энергия водородной связи включает три составляющие: электростатическую энергию притяжения, преобладающую на больших расстояниях, энергию поляризации и переноса заряда, проявляющуюся при уменьшении расстояния и способствующую притяжению молекул, и энергию отталкивания. Силы притяжения и отталкивания в водородном мостике сбалансированы. В зависимости от энергии связи водородные связи подразделяют на сильные и слабые . Появление водородной связи понижает суммарную энергию системы.
Индукционное взаимодействие. Установлено, что растворители, обладающие значительным дипольным моментом, способны индуцировать дипольный момент у молекул асимметричной и слабоасимметричной структуры. Следовательно, индуцированию подвержены как полярные, так и некоторые неполярные углеводороды масляного сырья. Поляризации подвержены в большей степени полициклические ароматические углеводороды, у которых ароматические кольца слабо экранированы нафтеновыми циклами и короткими алкиль-ными цепями . Под влиянием электростатического поля растворителя в таких молекулах масляной фракции возникает деформация внешнего электронного слоя, что приводит к неравномерному распределению зарядов на отдельных участках молекул. В результате неполярная молекула временно превращается в индуцированный диполь. Молекулы с индуцированным дипольным моментом подвергаются далее ориентационному взаимодействию и переходят в раствор полярного растворителя. Индукционные силы взаимодействия зависят от силы электростатического поля полярной молекулы, то есть от значения дипольного момента и химической природы неполярных молекул, а именно от способности их поляризоваться. Индуцированный дипольный момент (аи пропорционален напряженности поля Е, то есть я„=аЕ, где а характеризует степень поляризуемости индуцированной молекулы.
Сила индукционного взаимодействия, как и у ориентацион — ного, обратно пропорциональна г6, поэтому оно также короткодействующее. Поскольку температура не влияет на поляризуемость, индукционное взаимодействие, в отличие от ориентационного, не зав 1сит от температуры.
* Чем больше дипольный момент .полярной молекулы, тем больше с!ила ее электрического поля, тем сильнее нод действием этой силы происходит деформация электронного облака молекулы неполярного вещества и, следовательно, больше индуцированный диполь. Сила индукционного взаимодействия обратно пропорциональна г6, поэтому это взаимодействие тоже короткодействующее. Деформация электронных облаков неполярных молекул связана с их внутренним сопротивлением изменению структуры и поэтому практически не зависит от температуры.
Фенол более четко отделяет парафино-нафтеновую часть сырья от ароматической, но в то же время, как указывалось выше, ме-менее избирателен по отношению к ароматическим углеводородам, различающимся по числу колец в молекуле и числу атомов углерода в боковых цепях. Фурфурол более полно извлекает из сырья лолицикличеокие ароматические углеводороды с короткими боковыми цепями. Это объясняется тем, что углеводороды такой структуры обладают наибольшим значением молекулярной поляризации и растворение их в фурфуроле, имеющем высокий дипольный момент, происходит в результате индукционного взаимодействия молекул. Фурфурол, обладающий меньшими дисперсионными силами, чем фенол, в меньшей степени извлекает серосодержащие соединения, особенно сульфиды . Это следует из данных рис. 20 об извлечении серосодержащих соединений от содержания их в дистилляте при очистке фенолом и фурфуролом. Данные о групповом углеводородном составе рафинатов и экстрактов фенольной и фурфурольной очистки, проведенной в оптимальных для каждого растворителя условиях, на примере дистиллята сернистой парафинистой нефти приведены ниже:
Выход рафината при повышении температуры очистки фурфуролом снижается в меньшей степени, чем при повышении кратности этого растворителя к сырью . Однако на степень извлечения низкоиндексных компонентов больше влияет увеличение кратности фурфурола, чем повышение температуры экстракции, так как растворение этих компонентов происходит в результате индукционного взаимодействия их молекул с молеку-
Чем больше дипольный момент полярной молекулы, тем больше сила ее электрического поля, тем сильнее под действием этой силы происходит деформация электронного облака молекулы неполярного вещества и, следовательно, больше индуцированный диполь. Сила индукционного взаимодействия обратно пропорциональна г6, поэтому это взаимодействие тоже короткодействующее. Деформация электронных облаков неполярных молекул связана с их внутренним сопротивлением изменению структуры и поэтому практически не зависит от температуры.
Фенол более четко отделяет парафино-нафтеновую часть сырья от ароматической, но в то же время, как указывалось выше, ме-менее 'избирателен по отношению к ароматическим углеводородам, различающимся по числу колец в молекуле и числу атомов углерода в боковых цепях. Фурфурол более полно извлекает из сырья полицикличеокие ароматические углеводороды с короткими боковыми цепями. Это объясняется тем, что углеводороды такой структуры обладают наибольшим значением молекулярной поляризации и растворение их в фурфуроле, имеющем высокий дштольный момент, происходит в результате индукционного взаимодействия молекул. Фурфурол, обладающий меньшими дисперсионными силами, чем . Однако на степень извлечения низкоиндексных компонентов больше влияет увеличение кратности фурфурола, чем повышение температуры экстракции, так как растворение этих компонентов происходит в результате индукционного взаимодействия их молекул с молеку-
молекул, а следовательно, и силы Ван-дер-Ваальса, в частности энергия индукционного взаимодействия.
Ориентационное взаимодействие обусловливается наличием двух полярных молекул, причем с увеличением температуры энергия этого взаимодействия снижается. Взаимодействие двух молекул, одна из которых является постоянным диполем, а в другой диполь наводится первой, называется индукционным; величина энергии индукционного взаимодействия не зависит от температуры. Дисперсионное взаимодействие наблюдается как между полярными, так и неполярными молекулами; оно вызвано взаимным возмущением электронных орбиталей, в результате чего образуются два мгновенных диполя. Соотношение всех перечисленных видов взаимодействий зависит от степени полярности компонентов НДС. В системе слабополярных молекул основными являются силы дисперсионного взаимодействия, а с увеличением полярности возрастают силы ориента-ционного взаимодействия.
Энергия индукционного взаимодействия убывает при увеличении расстояния между молекулами и пропорциональна шестой степени величины этого расстояния. Ориентация наведенного диполя не зависит от температуры системы, а определяется лишь направлением постоянного диполя. Индукционное взаимодействие неаддитивно в отношении понижения суммарной энергии системы.
Ориентационное взаимодействие обусловливается наличием двух полярных молекул, причем с увеличением температуры энергия этого взаимодействия снижается. Взаимодействие двух молекул, одна из которых является постоянным диполем, а в другой диполь наводится первой, называется индукционным; цели-чина энергии индукционного взаимодействия не зависит от температуры. Дисперсионное взаимодействие наблюдается как между полярными, так и неполярными молекулами; оно вызвано взаимным возмущением электронных орбиталей, в результате чего образуются два мгновенных диполя. Соотношение всех перечисленных видов взаимодействий зависит от степени полярности компонентов НДС. В системе слабополярных молекул основными являются силы дисперсионного взаимодействия, а с увеличением полярности возрастают силы ориента-ционного взаимодействия. Интенсивно протекает. Интенсивно развиваться. Интересные результаты. Интерпретация полученных. Иллюстрируется приведенными.
Главная -> Словарь
|
|