Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Компонентов вследствие


Другие схемы переработки газа не дают возможности регулировать, поддерживать на одном уровне глубину извлечения целевых компонентов при изменении состава газа. Действительно, любая схема, основанная на процессе конденсации, рассчитана на определенные параметры. Если газ, поступающий на переработку стал беднее, то при тех же параметрах степень извлечения целевых компонентов уменьшается. Наоборот, если перерабатываемый газ стал более жирным, то степень извлечения целевых компонентов возрастает.

Из уравнения следует, в частности, что^коэффициент извлечения компонентов возрастает с увеличением абсорбционного фактора и числа теоретических тарелок. Это уравнение вошло в химическую технологию под названием уравнения Крейсера— Брауна, так как первоначально эта зависимость без второго члена правой части уравнения была получена Саудерсом и Брауном. Крейсер ввел в уравнение Саудерса и Брауна поправку, учитывающую снижение эффективности процесса при наличии в регенерированном абсорбенте извлекаемых из газа компонентов . Уравнение Крейсера—Брауна является частным случаем уравнения , полученного Хартоном и Франклином.

1) общая концентрация рассола и концентрация большинства отдельных его химических компонентов возрастает с глубиной;

творителя к сырью концентрация углеводородов и смол в растворителе велика. Увеличение кратности растворителя приводит к уменьшению концентрации этих компонентов в растворе, при этом снижается влияние дисперсионных сил углеводородов, что вызывает выделение части их из раствора, и выход нерастворенных компонентов возрастает. Это происходит до тех пор, пока концентрация углеводородов и смол соответствует растворимости их в чистом виде в данном растворителе при данной температуре. Добавление следующих порций растворителя не приводит к дальнейшему увеличению выхода нерастворенных компонентов сырья, так как при этом раствор перестает быть насыщенным. Растворитель начинает растворять компоненты большей молекулярной массы, т. е. те компоненты, которые при меньшей кратности растворителя выделились из раствора, и выход нерастворенной фазы уменьшается.

В области температур, близких к критической температуре растворителя, .наблюдается аналогичная зависимость между расходом растворителя и выходом нерастворенных компонентов для растворов в полярных и неполярных растворителях. Как известно, при малой кратности растворителя к сырью происходит только насыщение сырья растворителем. Увеличение расхода растворителя приводит к образованию двух фаз. При дальнейшем повышении кратности растворителя как полярного, так и непо-лярнО'ГО, выход нерастворанных компонентов сначала увеличивается, а затем уменьшается . При малой кратности растворителя к сырью концентрация углеводородов и смол в растворителе велика. Увеличение кратности растворителя приводит к уменьшению концентрации этих компонентов в растворе, при этом снижается влияние дисперсионных сил углеводородов, что вызывает выделение части их из раствора, и выход нерастворенных компонентов возрастает. Это происходит до тех пор, пока концентрация углеводородов и смол соответствует растворимости их в чистом виде в данном растворителе при данной температуре. Добавление следующих порций растворителя не приводит к дальнейшему увеличению выхода нерастворенных компонентов сырья, так как при этом раствор перестает быть насыщенным. Растворитель начинает растворять компоненты большей молекулярной массы, т. е. те компоненты, которые при меньшей кратности растворителя выделились из раствора, и выход нерастворенной фазы уменьшается.

Давление во фракционирующем абсорбере поддерживают обычно равным от 12 до 20 am, хотя на некоторых установках эксплуатируются аппараты, давление в которых достигает 30 am. При повышении давления поглощение газовых компонентов возрастает, но следует иметь в виду, что повышение давления в пределах 12—20 am относительно мало способствует поглощению пропана и в то же время значительно увеличивается нежелательная абсорбция этана .

При практическом использовании растворителей для очистки нефтепродуктов часто оказывается, что растворяющая способность или избирательность не обеспечивает требуемых результатов очистки. Например, выбранный растворитель имеет большую растворяющую способность при невысокой избирательности или наоборот. В этом случае используют смешанные растворители или к основному растворителю добавляют небольшое количество другого растворителя, улучшающего одно из свойств основного. Для снижения растворяющей способности в качестве антирастворителя на практике чаще всего используют воду. Но при этом ухудшается и избирательность полярного растворителя. Например, при очистке вязкого масляного дистиллята туймазинокой нефти с увеличением содержания воды в феноле количество нерастворимых в нем компонентов возрастает, но качество получаемого рафината ухудшается ; это свидетельствует об одновременном снижении и растворяющей способности фенола, и его избирательности.

Из всех углеводородов масляных фракций наименьшей растворимостью в избирательных растворителях обладают твердые углеводороды парафинового, а также нафтенового, ароматического и нафтено-ароматического рядов с длинными алкильными цепями нормального строения. Если к избирательному растворителю добавлять бензол или толуол , то можно подобрать такую смесь, в которой при определенных температурах не растворяются твердые углеводороды масла и растворяются все остальные углеводороды. Например, при добавлении к жидкому сернистому ангидриду бензола растворяющая способность смеси настолько повышается, что при —30°С в ней растворяются все углеводороды, содержащиеся в дистилляте средней вязкости, за исключением твердых углеводородов. С увеличением длины углеводородного радикала в молекулах растворителей, например в кетонах, увеличивается растворимость всех компонентов масла. Но при этом растворимость жидких компонентов возрастает намного быстрее, чем твердых, что позволяет достичь полной растворимости жидких компонентов в уело-

Наконец, важно отметить невозможность прямого измерения величины активности катализатора и невысокую точность аналитических методов контроля. Существенные трудности возникают при измерении характеристик сырья и нефтепродуктов. Детальный анализ низкокипящих и среднекипящих фракций промышленных смесей выявляет наличие многих десятков или сотен компонентов даже в узких фракциях этих смесей, причем с увеличением температуры кипения смеси число компонентов возрастает приблизительно в геометрической прогрессии .

.По мере повышения температуры системы вода — фенол взаимная растворимость компонентов возрастает. Следователь» но, участок MN двухфазной области будет сокращаться, т. е. точки М н N будут сближаться. При некоторой температуре точки М и N сольются и образуют одну общую точку К, кото-рая называется критической точкой растворения. Температура tK, отвечающая точке К, называется критической температурой растворения, так как, начиная с этой температуры, компоненты переходят из области частичной растворимости в область неограниченной взаимной растворимости.

Другие схемы переработки газа не дают возможности регулировать, поддерживать на одном уровне глубину извлечения целевых компонентов при изменении состава газа. Действительно, любая схема, основанная на процессе конденсации, рассчитана на определенные параметры. Если газ, поступающий на переработку стал беднее, то при тех же параметрах степень извлечения целевых компонентов уменьшается. Наоборот, если перерабатываемый газ стал более жирным, то степень извлечения целевых компонентов возрастает.

углеводороды. Это обусловливает большую сложность и разнообразие химической структуры и свойств составляющих остаточные продукты как жидких, так и твердых компонентов. Вследствие высокого молекулярного веса входящие в состав остаточных продуктов твердые углеводороды обладают весьма мелкой кристаллической структурой.

ратуры растворимость парафинов убывает более резко, чем растворимость низкозастывающих компонентов, вследствие чего разница между этими растворимостями увеличивается. И при температурах, при которых основная масса парафинов закристалли-зовывается, эта разница достигает величины, достаточной для эффективной экстракционной депарафинизации. Следовательно, возникает процесс низкотемпературной экстракционной депарафинизации. Этот процесс разработан в ГрозНИИ и на Грозненском нефтемаслозаводе Н. Ф. Богдановым, С. И. Степуро, М. Г. Митрофановым, Е. М. Брещенко, Н. А. Тарасовым и М. И. Сергеевой. При обработке закристаллизованного нефтяного продукта избирательным растворителем этими исследователями обнаружено, что в раствор переходят только низкозастывающие компоненты, а застывающие вещества — лишь в том количестве, в котором они способны раствориться в этом растворителе при данной температуре. Выделившиеся же кристаллы парафина полностью удерживаются остающейся масляной фазой и в среду растворителя не переходят. Более того, если при охлаждении раствора, содержащего взвесь кристалликов парафина, выделится масляная фаза, то вся взвесь парафина перейдет в масляную фазу, а раствор полностью от нее очистится. Выделившуюся таким образом масляную фазу вместе с увлеченным парафином можно легко отделить от очистившегося раствора простым отстоем. Эта важная особенность процесса низкотемпературной экстракционной депарафинизации отличает его от процессов депарафинизации кристаллизацией, при которых приходится отделять от раствора мелкодисперсную твердую фазу.

Процесс физической стабилизации нефтей предназначен для удаления газовых компонентов. Вследствие высокого давления насыщенных паров газы выделяются из нефти при температуре окружающей среды, унося с собой ценные легкие компоненты бензиновых фракций.

лизе необходимо тщательно подобрать условия эксперимента, так как четкости разделения может препятствовать образование промежуточных фракций . Вытеснитель аый метод анализа часто применяется для препаративных целей.

В условиях деасфальтизации вследствие повышения температуры происходит непрерывное осаждение асфальтенов и непрерывное выделение смол из раствора в пропане. Образовавшаяся асфальтовая фаза состоит из агрегированных частиц асфальтенов с частично или 'полностью разрушенной мицелляряой оболочкой и смолистых веществ с равновесным содержанием углеводородных компонентов. Вследствие совместного высаживания асфальтено-вые частицы пептизируются смолами, что цриводит к образованию новой коллоидной системы; в результате золи переходят в гели. При этом из асфальтеновой фазы благодаря синерезису выделяется некоторая часть дисперсионной среды в виде раствора высокомолекулярных углеводородов и части смол в пропане. Пеп-тизацией асфальтенов и выделением жидкой фазы можно объяснить образование «сухого асфальта» с содержанием пропана всего 15—20% , в то время как смолы, не содержащие асфальтенов, при тех же температурных условиях способны растворять до 35—40% пропана.

В условиях деасфальтизации вследствие повышения температуры происходит непрерывное осаждение асфальтенов и непрерывное выделение смол из раствора в пропане. Образовавшаяся асфальтовая фаза состоит из агрегированных частиц асфальтенов с частично или полностью разрушенной мицеллярной оболочкой и смолистых веществ с равновесным содержалием углеводородных компонентов. Вследствие совместного высаживания асфальтено-вые частицы пептизируются смолами, что приводит к образованию новой 'коллоидной системы; в результате золи переходят в гели. При этом из асфальтеновой фазы благодаря синерезису выделяется некоторая часть дисперсионной среды в виде раствора высокомолекулярных углеводородов и части смол в пропане. Пеп-тизацией асфальтенов и выделением жидкой фазы можно объяснить образование «сухого асфальта» с содержанием пропана всего 15—20% , в то время как смолы, не содержащие асфальтенов, при тех же температурных условиях способны растворять до 35—40% иропана.

Книга ставит основной задачей показать состав нефтей как следствие необратимых превращений ее компонентов, вследствие чего нефть характеризуется рядом закономерностей в составе и распределении компонентов углеводородного и гетерогенного состава. В целом нефть рассматривается как природный объект, отражающий в себе влияние перераспределения энергии углеводородов, а также различных внешних факторов в обстановке нефтяного месторождения.

Неоднократно делались попытки связать состав газов и их возраст какими-либо закономерностями. Самая идея подобного взаимоотношения правильна, потому что. деградация молекул продолжается в течение всей геохимической истории нефти, хотя и замедляется в конце процесса. Теоретически можно ожидать, что древние газы должны содержать больше ближайших гомологов метана, чем газы начальных этапов превращения. Можно также ожидать, что переход азотистых соединений в азот должен относительно увеличить концентрацию азота в древних газах. Возможно, что подобное положение вещей и удалось бы показать анализами газа, однако на пути решения подобной задачи появляется множество затруднений: во-первых, газ представляет собой подвижную систему углеводородов, смесь которых неизбежно должна менять свой состав в зависимости от давления и температуры, особенно при наличии такого растворителя, как нефть; во-вторых, миграция газа связана с своеобразным хро-матографическим разделением компонентов вследствие различий в молекулярном весе и вязкости компонентов; в-третьих, в каждом месторождении можно предполагать частичное удаление наиболее легких компонентов в силу диффузии и подобных явлений, наконец, нельзя не считаться с тем, что нет практической возможности принимать известным количественное соотношение между газообразными и жидкими углеводородами нефти. Все это приводит к тому, что всякая проба газа, отобранная для исследования, будет случайной, т. е. обособленной от той среды, из которой она взята. Тем не менее изучение состава природных газов иногда позволяет наметить кое-какие закономерности, отражающие действительное положение дела.

Процесс физической стабилизации нефтей предназначен для удаления газовых компонентов. Вследствие высокого давления насыщенных паров газы выделяются из нефти при температуре окружающей среды, унося с собой ценные легкие компоненты бензиновых фракций.

Весьма важным фактором, определяющим жесткость, требуемую для достижения уровня супербензинов, и выход, достигаемый при этом уровне детонационной стойкости, является содержание циклических компонентов в исходном сырье. Например, в;табл. 11 приводятся выходы дебутанизированного' риформинг-бензина и более легких продуктов, получаемые при риформинге' для производства 95-октанового бензина из прямогонных бензинов с различным содержанием циклических компонентов. Вследствие более высокого содержания циклических компонентов в венесуэльском прямогонном бензине не только достигается увеличенный выход риформинг-бепзина, но и требуются менее жесткие условия, поскольку дегидрирование нафтеновых углеводородов протекает значительно легче и быстрее, чем дегидроциклизация Парафиновых. Образование ароматических углеводородов из парафиновых при риформинге кувейтского сырья оказалось значительно большим, чем при риформинге венесуэльского. При данной жесткости условий из общего содержания ароматических компонентов в кувейтском риформинг-бензине по расчету более V3 получалось в результате дегидроциклизации парафиновых углеводородов, в то время как при риформинге венесуэльского сырья образование ароматических углеводородов из парафиновых было совсем незначительным.

различных компонентов. Вследствие продольного смешения в шнек

 

Коксования нефтяного. Коксования показывает. Коксования позволяет. Коксования происходит. Коксования сланцевой.

 

Главная -> Словарь



Яндекс.Метрика