|
Главная -> Словарь
Концентрации дисперсной
3. На интенсивность термодеструктивных превра — щений ТНО существенное влияние оказывает растворяющая способность дисперсионной среды, которая определяет значение так называемой "пороговой" концентрации асфальтенов.
ВЫСОКОЕ температурой застывания характеризуются мазуты прямой перегонки нефти и крекинг-остатки . Температура застывания мазутов повышается с ростом в них концентрации асфальтенов.
Основной причиной этих противоречий является способность асфальтенов, как и смол, образовывать молекулярные соединения — ассоциаты. Поэтому молекулярная масса смолисто-асфаль-теновых веществ в очень большой степени зависит от принятого метода анализа и условий эксперимента. Большое значение имеют также тип растворителя, его полярность, концентрация асфальтенов в растворе, температура и т. п. Надежные и хорошо воспроизводимые значения молекулярной массы асфальтенов получаются, например, при использовании криоскопического метода в растворе нафталина при температуре 80 °С и выше при концентрации асфальтенов в растворе от 1 до 16%. При этом молекулы асфальтенов практически не ассоциируют, и молекулярная масса стабильно равна от 2000 до 2500. Это значение подтверждено многими исследованиями последнего времени . Определение молекулярной массы тех же асфальтенов методом «мономолекулярной» пленки бензольного раствора асфальтенов на воде приводит к значениям 50 000— 100000 и более . Вероятно, истинно мономолекулярного слоя асфальтенов при этом не получается и основную роль здесь играют крупные ассоциаты молекул. Таким образом, такие высокие значения характеризуют не молекулярную массу асфальтенов, а степень ассоциации их молекул в принятых условиях.
Основной причиной этих противоречий является способность асфальтенов, как и смол, образовывать молекулярные соединения — ассоциаты. Поэтому молекулярная масса смолисто-асфаль-теновых веществ в очень большой степени зависит от принятого метода анализа и условий эксперимента. Большое значение имеют также тип растворителя, его полярность, концентрация асфальтенов в растворе, температура и т. п. Надежные и хорошо воспроизводимые значения молекулярной массы асфальтенов получаются, например, при использовании криоскопического метода в растворе нафталина при температуре 80 °С и выше при концентрации асфальтенов в растворе от 1 до 16%. При этом молекулы асфальтенов практически не ассоциируют, и молекулярная масса стабильно равна от 2000 до 2500. Это значение подтверждено многими исследованиями последнего времени . Определение молекулярной массы тех же асфальтенов методом «мономолекулярной» пленки бензольного раствора асфальтенов на воде приводит к значениям 50000— 100000 и более . Вероятно, истинно мономолекулярного слоя асфальтенов при это;м не получается и основную роль здесь играют крупные ассоциаты молекул. Таким образом, такие высокие значения характеризуют не молекулярную массу асфальтенов, а степень ассоциации их молекул в принятых условиях.
ассоциаты - надмолекулярные структуры. На степень их ассоциации сильно влияет среда. Так, при низких концентрациях в бензоле и нафталине асфальтены находятся в молекулярном состоянии. При более высоких концентрациях в растворе формируются ассоциаты, состоящие из множества молекул. Именно способностью к ассоциатообразованию обусловливается разнобой на 1 - 2 порядка в результатах определения молекулярной массы асфальтенов различными методами, а также степень агрегатив-ной устойчивости ТНО в зависимости от концентрации асфальтенов и растворяющей способности дисперсионной среды. Строение и свойства асфальтенов существенно зависят от происхождения нефтяного остатка. Так, асфальтены из остатков деструктивного происхождения характеризуются по сравнению с нативными "рыхлыми" асфальтенами меньшей молекулярной массой, преимущественной конденсирован-ностью в плоскости, меньшими количеством и длиной алифатических структур и в связи с этим большей компактностью. Поэтому из таких остатков образуются коксы с более упорядоченной структурой. Соотношение смолы: асфальтены: ТНО колеблется в широких пределах -от 7:9:1 в остатках прямой перегонки до 1:7:1 в окисленных остат-;ках. В волокнообразующих пеках содержание асфальтенов достигает 80% и более.
5) на интенсивность термодеструктивных превращений ТНО существенное влияние оказывает растворяющая способность дисперсионной среды, которая определяет значение так называемой "пороговой" концентрации асфальтенов. Если дисперсионная среда представлена парафино-нафтеновыми углеводородами, обладающими слабой растворяющей способностью , асфалыены выпадают из раствора при низких их концентрациях. Наоборот, в среде "хорошего" растворителя, например полициклических ароматических углеводородов или смол, выпадение асфальтенов происходит только при превышении значения их "пороговой" концентрации. ;
Коксообразование идет по реакции второго порядка по концентрации асфальтенов в растворе. Энергия активации в этом случае близка нулю, так как k\ является, по существу, константой, скорости диффузии , fa — константа скорости выделения ассоциатов из раствора — очень мало зависит от температуры , а энергия активации Е-\ распада ассоциатов асфальтенов на дискретные молекулы, определяемая силами Ван-дер-Ваальса между молекулами асфальтенов , также невелика . При дальнейшем повышении температуры растворяющая способность растворителя по отношению к асфальтенам понижается настолько, что асфальтены с большой скоростью выделяются из раствора в виде микрокапель второй жидкой фазы и образование кокса происходит в основном в результате закоксрвывания этих
Рис. 3.3. Зависимость концентрации асфальтенов и кокса от времени разложения смол при 400 °С.
Увеличение глубины реакции при заданных температуре и давлении приводит к накоплению в жидкой фазе асфальтенов и в зависимости от состава исходного сырья и условий процесса — к достижению пороговой концентрации асфальтенов или к достижению жидкой фазой состава, соответствующего плохой растворимости в ней асфальтенов. При уменьшении глубины крекинга в обоих случаях коксообразование не происходит.
ректификацию, а в камере накапливаются тяжелые жидкие остатки разложения сырья. При достижении пороговой концентрации асфальтенов в камере образуется коксовая масса. Время-пребывания в камере различно для газовой и жидкой фаз. Компоненты газовой фазы покидают зону высоких температур быстро, компоненты жидкой фазы находятся в камере практически до полного разложения на газофазные продукты и кокс.
ния уменьшается до нуля; 2) одновременно с уменьшением содержания смол растет выход асфальтенов ; он достигает максимума, затем начинает уменьшаться, и наконец, асфальтены почти исчезают; 3) количество карбоидов в начале процесса коксования ничтожно; образование их происходит медленно , но по мере увеличения асфальтенов растет и образование карбоидов; при достижении максимального накопления асфальтенов начинается быстрый рост карбоидов, затем образование карбоидов замедляется и с исчезновением асфальтенов остается постоянным. Снижение содержания смол при коксовании при одновременном увеличении количества асфальтенов говорит о том, что смолы постепенно уплотняются в асфальтены. Медленное образование карбоидов в начальных стадиях процесса коксования является результатом низкой концентрации асфальтенов; начало быстрого
При повышении концентрации дисперсной фазы может наступить момент, когда между частицами дисперсной фазы возникнет связь, достаточно прочная, чтобы противостоять приложенному к жидкости усилию. В этом случае данное усилие уже не сможет вызывать относительного перемещения частиц жидкости, т. е. жидкость потеряет подвижность, и только приложение более значительных усилий может вновь придать ей подвижность. •*•- Следовательно, жидкости, содержащие дисперсную фазу, в отличие от чисто гомогенных, ньютоновских жидкостей приобре-
Уравнение Бингама относится к идеальному случаю, при кото--ром дисперсная система после преодоления сопротивления сдвига, т. е. после разрушения структуры, сразу же начинает вести себя как ньютоновская жидкость, и при этом вязкость ее становится-независимой от движущего усилия. В действительности лишь очень немногие дисперсные системы приближаются к этому идеальному случаю. В большинстве же реальных дисперсных систем практически независимость вязкости от приложенного к жидкости усилия наступает лишь при применении больших усилий, а при меньших усилиях наблюдается только аномалия' вязкости. Для некоторых других дисперсных систем, например для систем с высокой истинной вязкостью жидкой среды и при относительно небольшой концентрации дисперсной фазы, можно наблюдать только аномалию вязкости, но при отсутствии предель--ного напряжения сдвига . Иными словами, эти дисперсные системы, характеризующиеся аномалией вязкости,, способны проявлять подвижность при самых малых усилиях.
/ а) оговорить, что кажущаяся вязкость \н является функцией действующего на жидкость удельного усилия F/S, истинной вязкости жидкой среды и, и концентрации дисперсной фазы, размера ее частиц и связи между этими частицами; V б) указать, что величина 9 может изменяться до нуля включительно.
Следовательно, подвижность структурных жидкостей определяется не только вязкостью жидкой среды, как ньютоновских, но и характером и количеством содержащейся в ней дисперсной фазы. Это относится к дисперсной фазе как в коллоидном, так и в макродисперсном состоянии. По этой причине структурная жидкость при наличии в ней достаточно высокой концентрации дисперсной фазы и должной связи между ее частицами может потерять свою подвижность даже при невысоких значениях вязкости жидкой среды, при которых она оставалась бы в данных условиях совершенно подвижной в случае отсутствия дисперсной фазы.
По концентрации дисперсной фазы все эмульсии делят на разбавленные, концентрированные и высококонцентрированные. Под разбавленными понимают высокодисперсные эмульсии, содержащие до 0,1% дисперсной фазы; по размеру частиц они близки к коллоидным растворам, т. е. диаметр глобул в таких эмульсиях около 10" 5 см. Разбавленные эмульсии агрегативно устойчивы даже без введения эмульгаторов, по своим свойствам они больше похожи на лиофобные золи. Классическим примером разбавленной эмульсии может быть эмульсия машинного масла в воде, образующаяся при конденсации пара в процессе работы паровой машины.
По величине концентрации дисперсной фазы все эмульсии делят на разбавленные, концентрированные и высококонцентрированные. Под разбавленными эмульсиями, в данном случае, понимают высокодисперсные эмульсии, содержащие до 0,1% дисперсной фазы; по величине частиц они близки к коллоидным растворам, т. е. диаметр капелек около 10~5 см. Разбавленные эмульсии агрегативно устойчивы без введения эмульгаторов, по своим свойствам они больше всего похожи на лиофобные золи. Примером разбавленной эмульсии может быть эмульсия машинного масла в воде, образующаяся при конденсации пара в процессе работы паровой машины.
В настоящее время реология эмульсий изучена еще недостаточно полно для того, чтобы можно было бы говорить о теории, учитывающей все вышеперечисленные факторы, несмотря на то, что этому вопросу посвящено большое число теоретических и экспериментальных работ. Большая их часть посвящена исследованию зависимости вязкостных свойств эмульсий и суспензий от концентрации дисперсной фазы. Одна из первых работ в этой области принадлежит Эйнштейну , который при исследовании вязкости разбавленных суспензий, содержащих жесткие сферические частицы с суммарной концентрацией W, получил следующее соотношение
В дальнейшем это соотношение было несколько уточнено Кин-чемом за счет учета членов более высокого порядка по концентрации дисперсной фазы
При возрастании концентрации дисперсной фазы скорости осаждения эмульгированных частиц начинают уменьшаться за счет их гидродинамического взаимодействия друг с другом*. Начинают реализоваться условия так называемого стесненного осаждения, закономерности которого для полидисперсных эмульсий еще недостаточно изучены. Имеющиеся результаты являются либо полуэмпирическими, либо получены для наиболее простых моделей осаждения, в которых используется предположение о монодисперсности оседающих частиц. Одна из первых работ по моделированию стесненного осаждения частиц была сделана Карманом. Он предложил модель для расчета скорости осаждения в высококонцентрированных дисперсных системах . Для систем с меньшей концентрацией Бринкма-ном , в которой система диспергированных частиц представлена в виде правильной структуры, а взаимное влияние частиц учитывается граничными условиями, заданными на поверхности эффективных жидких сфер, охватывающих каждую частицу.
Наиболее теоретически обоснованы закономерности стесненного осаждения в работе Тэма . Он рассматривает статистически однородную структуру частиц и считает, что возмущение потока, вызываемое одной частицей, можно заменить силой, равной по величине и обратной по направлению силе, с которой поток действует на частицу. Эта эффективная сила прикладывается к центру частицы. Сопротивление, испытываемое частицей, пропорционально скорости невозмущенного потока в центре частицы, которая слагается из скорости жидкости в отсутствие частиц и скорости жидкости, обуславливаемой влиянием всех остальных частиц. Считая обтекание частиц стоксовым, Тэм получил следующее соотношение для определения скорости осаждения сферической частицы в монодисперсной эмульсии иэ в зависимости от концентрации дисперсной фазы
Рис. 1.2. Зависимости относительной скорости стесненного осаждения сферических частиц от концентрации дисперсной фазы, Количества материала. Количества насыщенных. Количества необходимого. Количества образовавшихся. Количества олефиновых.
Главная -> Словарь
|
|