Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Кинетическое исследование


Неустойчивость систем оказывает влияние на протекание в заводских условиях целевых и 'побочных химико-технологических процессов и вызывает в ряде случаев необходимость принятия соответствующих технических мер . Укрупнение частиц дисперсной фазы за счет их слипания под влиянием межмолекулярного взаимодействия друг с другом с потерей кинетической устойчивости и последующим разделом фаз называется коагуляцией. Этот процесс состоит из скрытой и явной стадий.

Реальные нефтяные дисперсные структуры всегда неоднородны из-за полидисперсности частиц ССЕ, низкой кинетической устойчивости системы на начальных стадиях ее получения. Нерегулируемые фазовые переходы приводят к формированию дисперсных структур со значительной неоднородностью, что вызывает иногда нежелательные эффекты .

Высокая дисперсность асфальтенов создает избыток поверхностной энергии, вследствие чего такие системы термодинамически неустойчивы и стремятся к расслоению на две фазы. При недостаточном стабилизирующем действии окружающей дисперсионной среды частицы асфальтенов предварительно ассоциируются, сцепляясь под действием молекулярных сил в агрегаты, что приводит к потере кинетической устойчивости системы. В значительной степени свойства нефтяных остатков как коллоидных систем зависят от степени дисперсности асфальтенов, а в случае крекинг-остатков также от степени дисперсности карбенов и карбоидов. В обычных условиях коллоидная система, состоящая из дисперсной фазы и дисперсионной среды , термодинамически и кинетически неустойчива; тем не менее, расслоение на фазы происходит медленно, что обусловлено в основном свойствами самой системы. Коагуляцию асфальтенов могут вызвать изменение состава дисперсионной среды, изменение температуры, механические' воздействия и другие факторы.

В связи с этим отсутствие в нефтях амилбензолов и малое содержание бутилбензолов говорит о том, что между ними проходит граница кинетической устойчивости метаново-ароматических углеводородов для нефтей.

Также рассмотрены возможности регулирования агрегативной и кинетической устойчивости битумных эмульсий как изменением соотношения и природы дисперсной фазы и дисперсионной среды, так и использованием эффективных катионных эмульгаторов и их композиций, а также различных модификаторов битума и водной фазы эмульсий.

Для объяснения нелинейных изменений ряда технологических и физико-химических свойств: выхода дистил-лятных фракций, характеристических температур, кинетической устойчивости, структурно-механических свойств и др. различных нефтяных систем обычно искали корреляцию со степенью дисперсности частиц. В случаях ее отсутствия иногда ссылались, в частности, на несовершенство методов определения размеров частиц дисперсной фазы. Однако основная причина в другом. Мы полагаем, что наряду с изменением степени дисперсности

Сущность физико-химической технологии заключается в регулировании фазовых переходов с помощью различных методов воздействия на сырье. Такое воздействие призвано экстремально изменять степень дисперсности системы. Применительно к процессам перегонки нефтяного сырья показано, что действие добавок или оптимальнее компаундирование различных сырьевых потоков вызывает повышение кинетической устойчивости системы, обусловленное снижением средних геометрических размеров составных частей структурных единиц .

уменьшению агрегативной и кинетической устойчивости дисперсной системы, находящейся в энергетическом поле твержой поверхности и приводить к формированию "граничных" коагуляционных структур большей толщины и прочности по сравнению с прямогонным нефтяным остатком.

Термодинамически неустойчивые системы могут быть до некоторых размеров частиц дисперсной фазы кинетически устойчивы. Потеря кинетической устойчивости приводит практически к разрушению коллоидной системы и превращению ее в качественно другую систему, например, грубую дисперсию. Возможно регулировать аг-регативную и кинетическую устойчивость системы, воздействуя на процесс коагуляции частиц дисперсной фазы, например созданием на их поверхности защитных слоев путем введения различных добавок. Устойчивость коллоидных систем может изменятся также за счет формирования вокруг дисперсных частиц сольватных слоев из молекул растворителя.

В этом случае снижается влияние теплового движения на изменение структуры и состояния нефтяной дисперсной системы. Важную роль в этих системах играют межмолекулярные взаимодействия, которые ответственны за структуру структурированных нефтяных дисперсных систем. Следует отметить важные особенности поведения нефтяных дисперсных систем при пониженных температурах. При понижении температуры нефтяной фракции уменьшается тепловое движение молекул жидкости, замедляется перемещение и конфигурационное изменение макромолекул в пачках и пакетах, начинаются процессы достройки пакетов и пачек углеводородами, кроме того может происходить создание новых пачек и пакетов из-за пересыщения раствора при понижении температуры. На поверхности частиц дисперсной фазы, состоящей в том числе из асфальтенов, смол, других включений, может происходить достройка отдельных их участков, с образованием «усов», которые вырастают из мицеллярных структур. Происходит смыкание мицеллярных структур с созданием крупных агрегатов или глобул. Это приводит к снижению агрегативной и кинетической устойчивости нефтяных дисперсных систем. Указанные процессы можно описать аналитически с применением математического аппарата.

Следует отметить, что при изучении нефтяных дисперсных систем недостаточно рассмотрены вопросы взаимодействия фаз, процессы агрегирования и дезагрегирования, приводящие к прямым и обратным переходам от простых к сложным составам дисперсной фазы, оказывающим в конечном итоге решающее влияние на агрегативную и кинетическую устойчивость нефтяной дисперсной системы. Особенностью нового подхода к рассмотрению происходящих при этом явлений было определение принципиального различия между процессами депрессии температуры застывания и ингибирования парафиноотложения в нефтяных системах с точки зрения устойчивости системы к расслоению, под которой понимается, как уже указывалось, способность системы сохранять в объеме равномерное распределение во времени частиц дисперсной фазы. При рассмотрении процессов депрессии температуры застывания и ингибирования парафиноотложения в нефтяных дисперсных системах предполагалось, что депрессирование температуры застывания заключается в регулировании агрегативнои устойчивости системы, а ингибирование парафиноотложения — в изменении склонности системы к расслоению.то есть кинетической устойчивости системы.

Для выяснения механизма взаимных переходов сте-реоизомеров 1,2- и 1,4-диметшщиклогексанов в присутствии Ni-катализатора в интервале 100 — 180 °С Д. Шо-пов и сотр. провели кинетическое исследование в 'проточной и безградиентной системах в присутствии водорода. Анализ опытных данных и среднего квадратичного отклонения вычисленных констант скоростей реакции показал, что наилучшее совпадение с опытными данными дает следующее уравнение для скорости реакции W

Наличие двух направлений — гомо- и гетеролитического при катализированном Me"+Lx распаде ROOH было установлено при сопоставлении скоростей расходования ROOH UROOH и инициирования и,- в процессе каталитического разложения гидропероксида. Изучить возможные направления распада ROOH весьма трудно. Во-первых, при измерении Vi методом ингибиторов в присутствии металлов переменной валентности можно получить неверные результаты из-за окисления ингибитора ионами металлов дополнительно к их окислению радикалами. Поэтому в таких системах более надежны методы измерения vi по скорости инициированной цепной реакции полимеризации или окисления. Во-вторых, в ряде случаев образующиеся в системе радикалы вызывают в заметной степени индуцированный распад ROOH. Поэтому чтобы надежно установить каждое из направлений распада ROOH, приходится проводить подробное кинетическое исследование системы ROOH — Ме"+?*.. В табл. 6.1 приведены результаты такого исследования для ряда каталитических систем. Как видно из данных табл. 6.1, ROOH распадается на радикалы в одних системах примерно на 100%, в других на очень малую величину . Неравенство ?г

 

Красителей фармацевтических. Кратковременных испытаний. Кратность разбавления. Кратности растворителя. Катализаторы катализатор.

 

Главная -> Словарь



Яндекс.Метрика