Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Каталитической депарафинизации


Одним из нас приведены результаты по количественному определению пяти- и шестичленных нафтенов в беп-зино-лигроиновых фракциях норийской нефти. В настоящей работе мы задались целью исследовать химическую природу супсинской нефти из скважины ,\ь 5. 'Для исследования содержания гексагидроароматических углеводородов п других цикланов применяли метод дегндрогенизационного катализа академика Н. Д. Зелинского . Дегидроциклизация парафиновых углеводородов на платинированном угле, открытая Б. А. Казанским и А. Ф. Платэ дает основание для критического подхода к методу каталитической дегидрогенизации шестичленных нафтенов присутствующих в бензинах. Ароматические углеводороды могут образоваться не только из гексагидроароматических углеводородов, но и из парафиновых углеводородов, содержащих достаточное число атомов углерода для образования шестичленного цикла. Ю. К. Юрьев на примере искусственной смеси и один из нас на примере бензина мирзаанской нефти показали, что количество ароматических углеводородов, образующихся при дегидрировании гексагидроароматических углеводородов, соответствует количеству гексагидроароматических. углеводородов в исходном продукте. Результаты исследования Ю. К. Юрьева и одного из нас позволяют применять метод академика Н. Д. Зелинского для количественного определения пяти-и шестичленных нафтенов в бензино-лигроиновых фракциях супсинской нефти. Этот метод широко применяли разные авторы для определения пяти- и шестичленных нафтенов в советских и зарубежных нефтях .

Процессы производства олефиновых и диолофиновых углеводородов путем каталитической дегидрогенизации впервые были широко использованы США во время второй мировой войны. Методы получения оле-финов были разработаны за несколько лет до войны в результате интенсивной исследовательской работы в период от 1930 до 1940 гг. Однако в то время эти методы были малорентабельными. Кроме того, относительно небольшой спрос на газообразные олефины удовлетворялся производством их на установках каталитического крекинга. С начала войны спрос на олефины и диолефины как сырье для производства алкилированного бензина и синтетического каучука способствовал строительству многочисленных дегидрогенизационных установок.

При каталитической дегидрогенизации .

Шестичленные нафтены в смеси с парафинами и пятичлешшми нафтенами количественно определяют при помощи каталитической дегидрогенизации по Зелинскому. Для выделения парафинов нормального строения из смеси с изопарафинами и нафтенами употребляют концентрированную азотную кислоту, хлорсульфо-новую кислоту и мочевину.

Химическая характеристика бензина по групповому составу может быть более полной, если определить в отдельности содержание пяти- и шестичленных нафтенов. Для этого деароматизирован-ные фракции бензина подвергают каталитической дегидрогенизации по Зелинскому . Образовавшиеся из шестичленных нафтенов ароматические углеводороды определяют подобно исходным ароматическим углеводородам фракции методом анилиновых точек.

Комбинированный метод определения индивидуального состава бензинов прямой перегонки основан на сочетании фракционированной перегонки, адсорбционной хроматографии, каталитической дегидрогенизации шестичленных нафтенов и на оптическом анализе получаемых узких фракций при помощи спектров комбинационного рассеяния света .

Для детализированного анализа керосинов иногда применяется пикратный метод, по которому многие ароматические углеводороды ряда нафталина выделяют и определяют в виде продуктов соединения с пикриновой кислотой . Вначале выделяют арэматические углеводороды, содержавшиеся в исходном керссине, а затем и образовавшиеся при каталитической дегидрогенизации шестичленных нафтенов установили, что при дегидрогенизационном катализе на платинированном угле ароматические углеводороды образуются не только в результате дегидрогенизации гидроароматических углеводородов, но и в результате циклизации углеводородов метанового ряда. Ю. К. Юрьев и П. И. Журавлев (((263, подвергая дегидрогенизационному катализу искусственные смеси углеводородов, содержащих шестичленные нафтены, показали, что количество образовавшихся ароматических углеводородов соответствует количеству гидроароматических углеводородов, находящихся в смеси углеводородов, подвергнутых каталитической дегидрогенизации.

Соотношение между реакциями крекинга и изомеризации высококипящих парафиновых углеводородов" в значительной мере зависит от типа применяемого катализатора. Применяя катализатор с высокой изомеризующей способностью, можно, как показано выше, получать преимущественно продукты изомеризации при подчиненном образовании продуктов расщепления. Такой подход лежит в основе процесса гадроизомеризации различного парафин-содержащего сырья . Кроме того, используя селективный катализатор, избирательно расщепляющий нормальные и малоразветвленные парафиновые углеводороды, можно удалять такие компоненты сырья в виде легких фракций при практическом отсутствии реакции изомеризации. На этом основан процесс каталитической депарафинизации нефтяного сырья . Наряду с реакциями изомеризации и крекинга возможно дегидрирование части парафинов с последующей циклизацией образующихся непредельных углеводородов . Часть полученных таким образом нафтеновых углеводородов может, в свою очередь, подвергаться дегидрированию с образованием ароматических углеводородов. Указанные продукты реакций дегидроциклизации и дегидрирования обнаружены в тяжелой фракции гидроизомеризата технического парафина .

Парафиновые углеводороды в процессе каталитической депарафинизации подвергаются крекингу и изомеризации. Преобладание превращений первого или второго типа также зависит от носителя катализатора. Когда доминирует крекинг парафинов, получаются продукту с меньшим индексом вязкости и выходом на сырье, причем чем ниже температура застывания продукта, тем ниже его индекс вязкости. Благодаря тому, что реакции крекинга и изомеризации протекают параллельно, выход депарафинирс-ванного продукта во всех случаях выше, чем при депарафинизации растворителем. При повышении температуры процесса или уменьшении скорости подачи сырья температура застывания продукта понижается. Образующиеся в процессе легкие фракции отделяют от целевого продукта разгонкой. Процесс каталитической депарафинизации тормозится присутствием в зоне реакции ароматических углеводородов, поэтому оптимальные результаты получаются при предварительном снижении их содержания путем селективной очистки, гидрирования или гидрокрекинга . Удаление ароматических углеводородов из сырья дает возможность снизить температуру процесса каталитической депарафинизацин

и повысить скорость подачи сырья. Применение предварительного гидрирования или гидрокрекинга позволяет одновременно повысить выход и снизить температуру застывания масла. Следовательно, наиболее эффективно сочетание процесса гидрирования или гидрокрекинга с процессом каталитической депарафинизации. Ниже показаны результаты переработки смеси вакуум-дистиллята и деасфальтизата по схеме гидрокрекинг — каталитическая депа-рафинизация — перегонка :

Стадию каталитической депарафинизации проводили под давлением 7 МПа при температуре 390—410 °С. Целевым продуктом являлась фракция выше 316 °С. В результате переработки получено базовое масло с выходом около 80% и индексом вязкости ПО. Суммарный расход водорода составил около 2%. Таким образом, процесс каталитической депарафинизации дает возможность создать технологию производства высококачественных масел, целиком основанную на каталитических процессах и исключающую наиболее дорогостоящий процесс — низкотемпературную депара-финизацию. При необходимости процесс каталитической депарафинизации обеспечивает получение продуктов с температурой застывания ниже —50 °С . Имеются сведения о подготовке к пуску первой промышленной установки каталитической депарафинизации мощностью 200—220 тыс. т/год, предназначенной для получения низкозастывающих основ гидравлических, трансформаторных и трансмиссионных масел .

Соотношение между реакциями крекинга и изомеризации высококипящих парафиновых углеводородов в значительной мере зависит от типа применяемого катализатора. Применяя катализатор с высокой изомеризующей способностью, можно, как показано выше, получать преимущественно продукты изомеризации при подчиненном образовании продуктов расщепления. Такой подход лежит в основе процесса гидроизомеризации различного парафин-содержащего сырья . Кроме того, используя селективный катализатор, избирательно расщепляющий нормальные и малоразветвленные парафиновые углеводороды, можно удалять такие компоненты сырья ,в виде легких фракций при практическом отсутствии реакции изомеризации. На этом основан процесс каталитической депарафинизации нефтяного сырья . Наряду с реакциями изомеризации и крекинга возможно дегидрирование части парафинов с последующей циклизацией образующихся непредельных углеводородов . Часть полученных таким образом нафтеновых углеводородов может, в свою очередь, подвергаться дегидрированию с образованием ароматических углеводородов. Указанные продукты реакций дегидроциклизации и дегидрирования обнаружены в тяжелой фракции гидроизомеризата технического парафина .

Парафиновые углеводороды в процессе каталитической депарафинизации подвергаются крекингу и изомеризации. Преобладание превращений первого или второго типа также зависит от носителя катализатора. Когда доминирует крекинг парафинов, получаются продукты с меньшим индексом вязкости и выходом на сырье, причем чем ниже температура застывания продукта, тем ниже его индекс вязкости. Благодаря тому, что реакции крекинга и изомеризации протекают параллельно, выход депарафиниро-ванного продукта во йсех случаях выше, чем при депарафинизации растворителем. При повышении температуры процесса или уменьшении скорости подачи сырья температура застывания продукта понижается. Образующиеся в процессе легкие фракции отделяют от целевого продукта разгонкой. Процесс каталитическом депарафинизации тормозится присутствием в зоне реакции ароматических углеводородов, поэтому оптимальные результаты получаются при предварительном снижении их содержания путем селективной очистки, гидрирования или гидрокрекинга . Удаление ароматических углеводородов из сырья дает возможность снизить температуру процесса каталитической депарафинизации

и повысить скорость подачи сырья. Применение предварительного гидрирования или гидрокрекинга позволяет одновременно повысить выход и снизить температуру застывания масла. Следовательно, наиболее эффективно сочетание процесса гидрирования или гидрокрекинга с процессом каталитической депарафинизации. Ниже показаны результаты переработки смеси вакуум-дистиллята и деасфальтизата по схеме гидрокрекинг — каталитическая депа-рафинизация — перегонка :

Стадию каталитической депарафинизации проводили под давлением 7 МПа при температуре 390—410 °С. Целевым продуктом являлась фракция выше 316 °С. В результате переработки получено базовое масло с выходом около 80% и индексом вязкости НО. Суммарный расход водорода составил около 2%. Таким образом, процесс каталитической депарафинизации дает возможность создать технологию производства высококачественных масел, целиком основанную на каталитических процессах и исключающую наиболее дорогостоящий процесс — низкотемпературную депара-финизацию. При необходимости процесс каталитической депарафинизации обеспечивает получение продуктов с температурой застывания ниже —50 °С . Имеются сведения о подготовке к пуску первой промышленной установки каталитической депарафинизации мощностью 200—220 тыс. т/год, предназначенной для получения низкозастывающих основ гидравлических, трансформаторных и трансмиссионных масел .

Дополнительно ресурсы дизельного топлива на НПЗ можно расширить с помощью процессов висбрекинга и особенно гидрокрекинга. Однако увеличение мощностей этих процессов сопряжено с крупными капиталовложениями и эксплуатационными расходами. В то же время можно заметно повысить ресурсы дизельных топлив без значительных затрат в нефтепереработке за ечет оптимизации требований к качеству топлив по величине цетанового числа, содержанию серы и другим показателям и расширения фракционного состава топлив путем повышения температуры их конца кипения без снижения температуры-застывания. Например, в США и Канаде в последние 15 лет цетановое число дизельных топлив снизилось с 50 до 45—40, что позволило заметно увеличить долю крекинг-газойля в суммарном дизельном фонде. Повысить температуру конца кипения дизельных топлив можно благодаря использованию депрессорных присадок или применению процессов адсорбционной или каталитической депарафинизации. Например, процесс каталитической депарафинизации фирмы «Мобил» позволяет снизить температуру застывания тяжелого газойля с +16 до —23 °С, что дает возможность использовать этот де-парафинированный газойль в качестве компонента дизельного топлива. Уже сейчас в ряде стран ЕЭС допускается, чтобы температура перегонки 90% дизельного топлива составляла 360 °С. Полагают, что к 1990—2000 гг. температура выкипания 90% дизельного топлива может достигнуть 382°С.

Процесс каталитической депарафинизации основан на реакциях гидроизомеризации парафиновых углеводородов и дегидроароматизации парафиновых углеводородов . Эти процессы рассмотрены в гл. VI. Сведений о промышленном применении каталитической депарафинизации пока нет, и эти процессы известны главным образом по патентным данным.

каталитической депарафинизации

 

Каталитическое окисление. Концентрация исходного. Концентрация компонента. Концентрация низкокипящего. Концентрация парафиновых.

 

Главная -> Словарь



Яндекс.Метрика