Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Металлсодержащих соединений


В монографии систематизированы литературные и собственные данные авторов о ряде наиболее важных превращений углеводородов в присутствии металлсодержащих катализаторов. Изложены современные представления о стереохимии каталитических превращений циклических углеводородов , рассмотрены чрезвычайно важные в практическом и теоретическом отношении реакции Cs- и Се-дегидроциклизации алифатических и алкилароматических углеводородов, а также механизмы указанных реакций.

В книге рассмотрены механизмы превращений алифатических и циклических углеводородов в присутствии гетерогенных металлсодержащих катализаторов. В ней не дается детального описания нефтехимических процессов; задачей книги является ознакомление читателя с современным состоянием исследований на примере реакций, имеющих в настоящее время важное практическое значение, а также реакций, представляющих по каким-либо причинам значительный теоретический интерес. В основу книги положен материал, опубликованный в научной литературе последних лет .

Подробное освещение развития работ в области сте-реоселективного и асимметрического катализа в присутствии металлсодержащих катализаторов читатель может найти в монографиях и обзорах .

Таким образом, Б. А, Казанскому, М. Ю. Лукиной и сотр. удалось выявить важные закономерности и сделать общий вывод о механизме гидрогенолиза циклопропанов на чистых металлах и металлах, отложенных на различных носителях. Этот вывод дает хорошо согласующуюся с экспериментальными результатами картину гидрогенолиза циклопропанов в присутствии металлсодержащих катализаторов. Увеличение размера и изменение типа алкильного заместителя, например переход от СН3- к нг^Р1-черни нашли в катализатах относительно небольшие количества метилциклопентена-1 и метилциклопентадиена. Наибольшую склонность к Cs-циклизации проявил гексадиен-1,5 . Однако более строгое доказательство возможности прямого перехода гексадиен—-метилциклопентен в присутствии металлсодержащих катализаторов пока отсутствует. Предложена гипотетическая схема Cs-циклизации гексадиена-1,5, сходная со схемой образования циклопентанов путем промежуточного образования ненасыщенных интермедиатов {82))). Согласно

При Cs-дегидроциклизации алканов и Cs-циклизации алкенов на Pt/Al2O3 показано , что скорость реакции в отсутствие Н2 быстро падает, доходя фактически до нуля, и наоборот, в токе Н2 проходит успешная циклизация как алканов, так и алкенов. Роль водорода при образовании циклопентанов в присутствии алюмоплатиновых катализаторов с низким содержанием Pt пока недостаточно ясна. Возможно, что влияние водорода на протекание реакции осуществляется по нескольким направлениям, часть которых обсуждалась выше. Не исключая этих возможностей и в случае нанесенных Pt-катализаторов, следует также обсудить ассоциативный механизм действия водорода , представляющийся авторам книги одним из наиболее вероятных. В соответствии с обсуждаемой схемой водород в случае реакции Сз-дегидроциклизации алканов играет ту же роль, что и в ряде других реакций, протекающих в присутствии металлсодержащих катализаторов, в частности в реакции миграции двойной связи в алкенах и в конфигурационной изомеризации диалкилциклоалка-нов i. В этих реакциях водород входит в состав переходного комплекса, образующегося на поверхности катализатора по ассоциативной схеме. Можно полагать, что реакция Cs-дегидроциклизации, также протекающая при обязательном присутствии и, по-видимому, с участием Н2, проходит через промежуточные стадии образования и распада переходного состояния:

Для последнего десятилетия характерен возросший интерес к поликонденсированньгм ароматическим углеводородам, которые могут служить основой для получения люминофоров, теплоносителей в атомных реакторах, высококалорийного реактивного топлива, некоторых инсектицидов, ряда термостойких полимеров. В этой связи представляет интерес цикл исследований Л. А. Эри-ванской, А. Ф. Платэ и сотр. , посвященный GS- и Се-дегидроциклизации алкил- и алкенилнафтали-нов в присутствии металлсодержащих катализаторов, а также различных видов оксида алюминия, с образованием фенантренов, антраценов, бензинданов и других полиядерных ароматических углеводородов. Соотношение продуктов дегидроциклизации—фенантрена и антрацена— в значительной мере зависит от температуры реакции. В присутствии Pt/Al2O3 дегидроциклизация 2-н-бу-тилнафталина сопровождается крекингом, изомеризацией и дегидрированием алкильной группы . Дегидроциклизация промежуточно образующегося 2- нафталина является главным фактором, определяющим преимущественное образование фенантрена при 400—510 °С. В случае Rh/Al2O3 протекают те же реакции, однако заметно возрастает удельный вес реакции гидрогенолиза алкильной группы 2-н-бутилнаф-талина.

Основные закономерности синтеза металлсодержащих катализаторов на основе цеолитов Y и М, установленные при исследовании их каталитических свойств в реакции изомеризации парафиновых углеводородов сформулированы в и сводятся к следующему:

В первых исследованиях механизма распада гидропероксидов под действием металлсодержащих катализаторов было четко доказано гемолитическое направление такого распада. Образование радикалов RO- при распаде ROOH в присутствии Feaq2+ было доказано по образованию продуктов присоединения RO- к бутадиену . Распад ROOH под действием соединений железа, кобальта, марганца, меди инициирует цепные реакции радикальной полимеризации и окисления. Образование пероксидных радикалов в системе ROOH—соль тяжелого металла зафиксировано методом ЭПР. Под влиянием этих факторов сложилось представление, что ион металла переменной валентности разрушает ROOH только гомолитически в результате одноэлектронного переноса. Однако в последние годы было показано, что часто протекают одновременно два процесса: гемолитический распад на радикалы и гетеролитический распад ROOH на молекулярные продукты, как это наблюдается и при распаде ROOH под действием кислот.

Устойчивость катализатора к действию ядов определяется спецификой взаимодействия катализатора и яда. Согласно современным представлениям, отравление металлсодержащих катализаторов соединениями кислорода , серы (H2S, RSH, С82 и

Реакции превращений металлсодержащих соединений и комплексов, включающих в основном ванадий и никель, по данным ряда исследова-

Недостаток работы в том, что авторы приняли для анализа системы допущение: все металлорганические соединения в сырье имеют однородный характер распределения по размерам. Наибольший интерес представляет подход, в котором учитывается распределение металлсодержащих соединений в различных компонентах сырья. Однако он связан со значительным усложнением математического аппарата, так как в расчетные зависимости необходимо вводить функции селективности^ учитывающие селективное проникновение фракций определенного размера в соответствующие поры оптимального размера. В литературе такой подход еще не нашел отражения. Если представить в упрощенной форме, то, например, уравнение после включения в него функций распределения молекул и частиц сырья по размерам и распределения размера пор катализатора будет выглядеть следующим образом :

При разработке стойких к отравлению металлами катали-зат^ров некоторые исследователи ставили задачу ограничить проникновение высокомолекулярных асфальтенов и металлсодержащих соединений в поры

500 WOO 1500 катализатора. Патентами фирмы tt ч Gulf Research предлагаются катализаторы с преобладающим радиусом пор в узких пределах, например 4,0-5,8, 5,8-8,0, 4,0-9,0, 9,0-15,0 нм, размеры которых соизмеримы с размерами молекул серусо-держащих соединений, но не доступны для более крупных молекул металлсодержащих соединений . Размером пор менее 6 нм характеризуется катализатор, предлагаемый для гидрообессеривания ромашкинской нефти . В патентах фирмы Esso Research and Engene-ering Co. описаны катализаторы, в которых максимальный объем пор и основная доля поверхности приходятся на поры диаметром 3,0—8,0 нм. Имеются также крупные транспортные поры диаметром более 200 нм , обеспечивающие доступ к активным центрам в порах диаметром 3,0-8,0 нм . Патентом предлагается катализатор гидрообессеривания тяжелого сырья с высоким содержанием асфальтенов и металлов, характеризующийся размером „входных окон" меньшим, чем диаметр самих пор. Предполагалось, что небольшой размер входных пор позволит проникнуть серусодержащим соединениям, в то же время они будут непроходимыми для более крупных молекул асфальтенов. Чем меньше размер входных пор, тем меньше дезактивация катализатора металлами. Однако, как отмечается,в результате превращения соединений металлов входные поры вскоре забиваются. У катализатора с размером входных пор 5,6 нм быстрая дезактивация начинается после 85 сут работы. Дезактивация катализатора с размером пор 6,5 нм идет медленнее и более плавно. Превращение асфальтенов лучше идет на катализаторе с удельной поверхностью 120-170 м2/г и размером пор 10,0—12,0 нм, а очистка от серусодержащих соединений на катализаторе с удельной поверхностью 150—250 м2/г и размером пор 6,0—10,0 нм, хотя удельный объем пор в обоих случаях практически одинаков . Патенты последних лет свидетельствуют об интенсивном поиске катализаторов, характеризующихся более широкопористой структурой:

Известны варианты использования катализаторов с различной пористой структурой путем послойной их загрузки , смешением различных катализаторов , созданием двухреакторной системы с использованием в реакторах катализаторов, различающихся структурой . Размещение более широкопористого катализатора в первом по ходу сырья слое позволяет улучшить селективность работы загрузки катализатора. В первых слоях идет, в основном, конверсия высокомолекулярных металлсодержащих соединений с адсорбцией металлов, а в последующих слоях идут реакции сернистых соединений. Разность в поровой структуре катализаторов может быть весьма значительна. Например , в первом слое может быть загружен катализатор основной объем пор которого приходится на поры 10-20 нм,. а в последнем 3-8 нм. Такие системы предлагаются для гидрообессеривания остаточного нефтяного сырья с высоким содержанием металлов.

Процесс гидрообессеривания остаточного сырья характеризуется рядом специфических особенностей. Это большие диффузионные затруднения для протекания основных реакций, обусловленные наличием значительной жидкой фазы в зоне реакции и большими размерами молекул сырья. Другой важный фактор - быстрая дезактивация катализатора, обусловленная высоким содержанием коксообразующих и металлсодержащих соединений. Все это резко снижает эффективность реакции удаления серы. В качестве примера могут быть приведены результаты изучения влияния металлсодержащих порфиринов и асфалыенов на степень гидрогенолиза тиофена. В качестве модельного соединения использован протопорфирин IX диметилэфира и асфалыены, выделенные из нефти. Добавление соответственно 6 и 4% этих веществ в тиофен снижает степень его превращения с 72% до нуля . В этой работе показано, что для асфалыенов более характерно отложение на внешней поверхности гранулы катализатора ввиду больших размеров их частиц и ассоциатов и, соответственно, создание условий для больших диффузионных затруднений в процессе. Порфирины, хотя и в большей степени проникают в поры катализатора, также отрицательно влияют на реакции удаления серы из тиофена.

На основе анализа кривых дезактивации катализатора, полученных при различных условиях процесса и на разных образцах катализатора, взятых с различных точек реактора, высказывается мнение о различной реакционной способности металлсодержащих соединений. Реакция деметаллизации представляется рядом параллельных реакций, скорость которых определяется эффективностью диффузии металлсодержащих соединений и их реакционной способностью.

На основе обработки экспериментальных данных делается вывод, что реакционная способность ванадиевых соединений меньше или равна реакционной способности никелевых соединений. Учитывая большее проникновение никеля вглубь гранулы, авторы отдают предпочтение роли диффузии металлсодержащих соединений.

На профиль распределения металлов по грануле катализатора заметное влияние оказывает температура процесса . С повышением температуры глубина проникновения ванадия уменьшается. Это говорит о том, что распределение в данном конкретном случае определяется в большей степени увеличением скорости реакции разложения металлсодержащих соединений, чем ростом скорости диффузии с повышением температуры. Ярко выражено увеличение скорости разложения металлсодержащих соединений с увеличением парциального давления водорода . Отложения углерода и металлов являются основной причиной резкого изменения поровой структуры катализатора .

Зона 1 — зона диффузии, адсорбции и термодеструктивного разложения надмолекулярных структур ; зона 2 — зона диффузии, адсорбции и деструктивного разложения металлсодержащих соединений, а также деструктивного гидрирования сильнополярных гетероциклических соединений; зона 3 - зона диффузии, адсорбции, деструктивного гидрирования низкомолекулярных гетероциклических соединений и гидрирования аренов и ненасыщенных продуктов термического разложения.

На увеличение удельной электрической проводимости заметно влияет обводнение топлива ; влияет также и наличие гетероатомных и металлсодержащих соединений. В соответствии с этим гидроочистка и гидрирование топлив закономерно снижают удельную электрическую проводимость.

 

Максимальной детонации. Минимально допустимого. Минимально возможное. Министерства химической. Минутного перемешивания.

 

Главная -> Словарь



Яндекс.Метрика