Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Некоторые зарубежные


Анализ литературных и собственных экспериментальных данных, приведенный в предыдущих главах, показывает, что в основе превращений, протекающих с тяжелым нефтяным сырьем на катализаторах, содержащих оксиды металлов переменной валентности, к которым относится и железо-окисный катализатор, лежит тсрмоокислнтельная конверсия углеводородов сырья по механизму "карбоксилатного" комплекса. Образование и окисление коксовых отложений, как и других продуктов окислительной каталитической конверсии, происходит в соответствии с закономерностями, обусловленными особенностями механизма действия катализаторов, содержащих оксиды металлов переменной валентности, и особенностями состава и свойств тяжелого нефтяного сырья. Некоторые закономерности накопления и окисления коксовых отложений рассмотрены ранее , более подробно этот вопрос рассматривается в следующем разделе.

Связь между структурой углеводородов и их антидетонационными свойствами установлена давно. В 1921 г. Рикардо определил толуоловые числа для 13 индивидуальных углеводородов и отметил некоторые закономерности влияния химического строения углеводородов на их детонационную стойкость. В 1934 г. были опубликованы данные об антидетонационных свойствах 171 индивидуального углеводорода, а в 1938 г. в американском Нефтяном институте была определена детонационная стойкость 325 углеводородов различного строения . Накопленный к настоящему времени экспериментальный материал позволяет выявить некоторые закономерности.

Приемостость углеводородов к ТЭС изучена довольно хорошо и выявлены некоторые закономерности. Наибольшей приемистостью к ТЭС обладают парафиновые углеводороды, наименьшей — олефи-новые и ароматические. Нафтеновые углеводороды занимают промежуточное положение. При этом, практически для всех углеводородов, за исключением ароматических, приемистость к ТЭС снижается по мере повышения октанового числа углеводородов.

где т + k = n, но С. В. Лебедев сопоставляет образование предельных углеводородов с накоплением богатых углеродом полимеров без детального обсуждения этого явления. Между тем на олефины и алкоголя аналогично действуют серная кислота и хлорид алюминия . Исследование таких процессов позволило С. С. Наметкину с сотрудниками сформулировать некоторые закономерности протекания каталитического сопряженного процесса полимеризации — деполимеризации олефинов, сопровождающегося гидрированием исходных олефинов . Следовательно, проводя параллель между каталитическим действием на олефины активных алюмосиликатов, с одной стороны, и серной кислоты или хлорида алюминия, с другой, можно объяснить образование пентана и изобутана при деполимеризации полимеров амилена и изобутилена только прямым гидрированием продуктов распада полимерных форм под воздействием флоридина.

кристаллическую структуру тиомолибдата аммония. Под действием высоких температур кристаллики WS2 упорядочиваются, образуя стабильную кристаллическую структуру, и теряют при этом каталитическую активность. В этой же статье 1в были обобщены некоторые закономерности модифицирования каталитических свойств WS2 путем нанесения на носители: нанесение WS2 на основные носители понижает изомеризующую и повышает гидрирующую активность, а нанесение на кислотные носители понижает гидрирующую и повышает расщепляющую активность. Аналогичные выводы были сделаны ранее для молибденовых катализаторов 101. Позднее для объяснения большей или меньшей гидрирующей активности промышленных катализаторов впервые были использованы 10а результаты электрономикроскопических исследований. В этой работе более высокая гидрирующая активность катализатора WS2 -f--f- NiS на А1203 по сравнению с чистым WS2 была объяснена тем, что WS2 в нем тонко распределен на большой поверхности А1203 и доступность его кристаллов значительно больше. Кроме того, кристаллы WS, в катализаторе WS2 + NiS на А1203 имеют значительно меньшие размеры, они как бы деформированы, что и было подтверждено 102 электрономикроскопическими исследованиями при увеличении в 14 000 раз. Подобные выводы и наблюдения делались до последнего времени вне связи с химией ускоряемых данными катализаторами процессов. Поэтому даже в наиболее тщательных и полных обзорах не дается разграничения ионных и радикальных реакций, различных типов реакций изомеризации и расщепления.

Существенные успехи достигнуты и в изучении .неуглеводородных компонентов "нефти, хотя в силу многих причин прогресс в этом направлении не столь значителен, как в химии углеводородов. Тем не менее надежно установлены важнейшие химические типы и структурные особенности многих ГАС, выявлены некоторые закономерности в групповом и индивидуальном составе отдельных классов этих соединению Интерес исследователей к химии нефтяных ГАС неуклонно растет, и есть все основания предполагать, что ближайшие годы будут периодом преимущественного подъема именно этой области наука о нефти.

Рассмотрим теперь некоторые закономерности распределения изолренсйдов в нефтях типа А1 . Уже в ранних работах, посвященных определению изопреноидных соединений в каус-тобиолитах, были высказаны предположения о том, что основным. источником образования этих соединений является непредельный. алифатический спирт фитол, входящий, как известно, в состав хлорофилла растений. И действительно, диаграмма распределения изопреноидных углеводородов, представленная на рис. 21, достаточно убедительно свидетельствует в пользу такого предложения. Термическое или термокаталитическое превращение фитола может привести к получению всей гаммы изопреноидов состава С9— С20, , за исключением изопреноидов С12 и С17, образование

В дальнейшем мы еще вернемся к рассмотрению некоторых вопросов динамической стереохимии. Здесь же необходимо обсудить некоторые закономерности в образовании ионов карбония и, в частности, закономерности первичного акта ионизации.

Мы не собираемся здесь освещать более подробно возможные механизмы перегруппировок этих сложных соединений. Это исследование иного, самостоятельного, плана. Достаточно указать, что многие перегруппировки, особенно протекающие на первых этапах, имеют очень высокие скорости , причем в отличие от незамещенного триметиленнорборнана, при исследовании превращения его метильных гомологов, а также других мостиковых углеводородов состава СПН12 уже имеются возможности выделения и исследования промежуточных продуктов. Здесь наблюдаются как гидриндановые перегруппировки, так и реакции расширения циклов за счет алкильных заместителей. Возможны также и трансаннулярные реакции. Короче говоря, возможен весь комплекс тех перегруппировок, которые были характерны для моно- и особенно для бициклических углеводородов. Кроме того, конечно, возможны и новые более сложные превращения, типичные лишь для трициклических углеводородов. Однако некоторые закономерности образования углев'одородов ряда адамантана, т. е. закономерности в составе уже конечных интересующих нас продуктов реакции, нуждаются в специальных пояснениях.

При исследовании бензинов различных нефтей комбинированным методом было определено до 90% углеводородов — алканов, циклоалканов €5 и С6 и аренов. Установлены некоторые закономерности в распределении углеводородов в бензине в зависимости от типа нефти. Бензины различных нефтей содержат примерно один и тот же набор углеводородов, однако в неодинаковом количестве, причем 10 углеводородов, присутствующих в бензине в этом используются усредненные значения коэффициентов поглощения для различных веществ.

Опишем некоторые закономерности для индивидуальных углеводородов различных гомологических рядов.

Процесс электроосаждения парафина остается в настоящее время еще весьма мало изученным. Сведений о промышленном применении данного процесса еще не имеется. Известны только некоторые зарубежные патенты , относящиеся к применению электроосаждения при депарафинизации.

В табл. 38 приведены аналоги зарубежных спецификаций на синтетические масла. Из таблицы видно, что некоторые зарубежные страны • не располагают собственными спецификациями на отдельные синтетические масла и используют без каких-либо изменений соответствующие спецификации США или Англии. Так, Дания, Голландия, Норвегия, Португалия, Турция вообще не имеют своих спецификаций на авиационные синтетические масла и руководствуются указаниями спецификаций США или Англии.

Как видно из приведенных в табл. 68 и иа рис. 4—6 результатов, ни одна из исследованных присадок не превосходит однозначно другие. Вместе с тем в условиях эксплуатации свойства моторных масел с полимерными присадками на .основе полиметак-рилата имеют особенно важное значение, так как они

 

Некоторыми особенностями. Некоторыми веществами. Некоторым недостатком. Некоторой критической. Некоторой постоянной.

 

Главная -> Словарь



Яндекс.Метрика