Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Окисления парафиновых


С течением времени открылись возможности полезной утилизации также и других побочных продуктов окисления парафинов, и теперь, как это имеется во многих других процессах химической технологии, все продукты реакции могут быть использованы для практических целей.

Катализатор. Из всех многочисленных катализаторов, рекомендуемых патентами, наиболее оправдали себя для окисления парафинов соли марганца, например перманганат калия . В противоположность другим каталитическим процессам, при которых применяется более или менее определенный катализатор, в данном случае вещество, собственно говоря и являющееся ускорителем реакции, образуется только в самом процессе.

Образование гидроперекисей подавляется фенолами и аминами и инициируется ультрафиолетовыми лучами и перекисями. Соли марганца сильно ускоряют реакцию. Следовательно, перекиси являются инициаторами, а соли марганца — катализаторами окисления парафинов. Если обработать смесь высших жирных спиртов воздухом при 120° с добавкой стеарата марганца в условиях, при которых проводят окисление пара-ф,инов, то реакция становится заметной только через 3—5 час. инкубационного периода. Если предварительно добавить 0,0025% мол. перекиси бензоила, то кислород начинает поглощаться сразу, даже без добавки стеарата марганца. Это означает, что, по-видимому, присутствуют вещества, противодействующие образованию радикалов, которые должны разрушаться окислением прежде, чем сможет начаться неинициируемая реакция. Такие вещества известны, они были проверены в обширных исследованиях Крегера и Каллера . Однако скорость всего процесса продолжает оставаться меньшей, чем в присутствии марганца. Если одновременно прибавить и перекиси и стеарат марганца, то реакция начинается сразу же и протекает быстро.

Окисление кетонов — третья фаза окисления парафиновых углеводородов — является тоже радикально-цепным процессом, в то время как распад а-кетогидроперекиси, катализируемый кислотами, должен протекать по криптоионному ' механизму .

В отношении использования смесей алифатических карбоновых кислот для мыловарения имеются исчерпывающие указания в соответствующих специальных трудах. Здесь же будет в основном обсуждаться вопрос об утилизации побочных продуктов окисления парафинов, потому что от этого отчасти зависит экономика всего процесса.

Водный конденсат, называемый в технике также «конденсаторной водой», образуется при охлаждении в трубчатых холодильниках отхо-.дящих газов процесса окисления парафинов. Получающийся при этом конденсат состоит из двух слоев: верхнего, маслянистого, называемого также «конденсаторное масло», и нижнего, упомянутого выше водного конденсата. Последний представляет 25—30%-ный раствор легколетучих низкомолекулярных жирных кислот, например муравьиной, уксусной, пропионовой и масляной, которые удерживают в растворе небольшое количество высших кислот. Вместе с ними присутствуют низкомолекулярные гидролизующиеся вещества, например лактоны, и, наконец, «неомыляемые» примеси в виде водорастворимых спиртов, альдегидов и кетонов.

Если просмотреть опубликованные научные исследования, посвященные выяснению этих вопросов, то оказывается, что раньше не существовало единого представления о возможном пункте атаки кислорода. Однако в последнее время существует общее мнение, что первая стадия окисления парафинов — образование гидроперекисей, как и всякий другой процесс замещения парафиновых углеводородов, протекает по зако-

Янтцен с сотрудниками впервые дал точные представления о процессе окисления парафинов и о пунктах окислительной атаки. Тщательной обработкой продуктов окисления парафинового гача они получили смесь жирных кислот, метиловые эфиры, которые разделяли ректификацией.

Из данных Витцеля снова вытекает, что старые взгляды на процессы окисления парафинов ошибочны. Ведь раньше считали, что кислород вначале .атакует преимущественно середину цепи и затем главным образом конец цепи.

Поскольку жирные кислоты, образующиеся при деструкции углеродного скелета, подвергаются дальнейшему окислению значительно быстрее, чем исходный углеводород, закономерности окисления парафинов довольно сильно замаскированы. В результате получается, что при несколько повышенных превращениях относительное содержание низших кислот в продуктах реакции увеличивается. Чем выше молекулярный вес исходного парафина, тем резче это происходит.

окисления парафинов 450

Все сказанное выше о влиянии условий ведения процесса на выход отдельных продуктов реакции справедливо для некаталитического окисления парафиновых углеводородов в газовой фазе. Но в то же время существует процесс каталитического окисления бутана в жидкой фазе в присутствии растворителя, например уксусной кислоты, и катализаторов, как ацетат никеля, кобальта и марганца.

В главе VI — окисление-—автор, излагая механизм реакции окисления парафиновых углеводородов с позиций перекисной теории, совершенно не упоминает одного из основоположников перекисной теории— А. Н. Баха. Развитие исследований в области разработки перекисной теории автор приписывает немецким ученым Лангенбеку и Притцкову, опубликовавшим свои исследования в 19'54 г., тогда как вопрос об образовании гидроперекисей как первичных продуктов присоединения кислорода к молекуле углеводорода значительно раньше был решен советскими исследователями. В выяснении сложного механизма реакции окисления углеводородов кислородом воздуха приоритет принадлежит советским ученым. Ряд гидроперекисей был выделен и описан К. И. Ивановым еще в 1949 г. Кроме того, -К- И. Иванов впервые показал, что вторичными реакциями при окислении углеводородов является не только их распад, но одновременно и дальнейшая пероксидация с образованием многоатомных гидроперекисей.

Для производства 1 т ацетальдегида из «-бутана требуется 3,9 т бутана, около 20 т воздуха и 85 т пара. О возможностях дальнейшей переработки многочисленных продуктов окисления парафиновых углеводородов см. статью Бладуорса .

Окисление кетонов — третья фаза окисления парафиновых углеводородов — является тоже радикально-цепным процессом, в то время как распад а-кетогидроперекиси, катализируемый кислотами, должен протекать по криптоионному ' механизму .

Хотя для окисления парафиновых углеводородов, кроме воздуха, была использована также хромовая кислота, единственной альтернативой практически является азотная кислота или окислы азота. Этими соединениями фирма Рурхеми А. Г. окисляла твердый синтетический парафин в высшие кислоты. Если в смесь твердого парафина и нитрозилсерной кислоты пропускать при 115—125° и хорошем перемешивании нитрозные газы, полученные окислением аммиака, то через 8— 12 час. достигается 50%-ная степень превращения. После омыления оксидата-сырца щелочью нейтральные примеси экстрагируют пентаном. Затем разбавленной серной кислотой выделяют карбоновые кислоты в свободном состоянии и получают продукты с температурой застывания 90°, кислотным числом 150 и числом омыления 180, которые no-свойствам могут быть определены как кислоты восков1.

«Кривая распределения кислот во всех случаях имеет ясно выраженный максимум, который при снижении степени окисления сдвигается в сторону высших кислот. Весьма вероятно, что первичная реакция начинается преимущественно у -конца цепи; при прогрессирующем окислении вначале образовавшиеся кислородсодержащие соединения с большой длиной цепи деградируют в низшие гомологи». Для точного выяснения такого основного вопроса при окислении парафинов, как определение пунктов атаки кислорода, необходимо прежде всего исходить из индивидуального тяжелого углеводорода с неразветвленной цепью. Этот углеводород не должен содержать третичных атомов водорода. Необходимо далее изучить скорость окисления парафиновых углеводородов и различных теоретически возможных жирных кислот самих по себе ,и в смесях друг с другом, проводя сравнение в одних и тех же условиях. Сверх того для истолкования полученных до сих пор результатов следовало бы определить в условиях, в которых проводят в технике окисление парафинов, зависимость реакционной способности чистых, индивидуальных парафиновых углеводородов, взятых отдельно и в смесях , от числа атомов углерода. Необходимо, чтобы в исходных продуктах отсутствовали разветвленные углеводороды, поскольку было точно установлено, что при окислении первичный атом водорода реагирует всего медленнее, третичный — очень быстр_о, а реакционная способность вторичного атома водорода занимает промежуточное положение.

Исследования Хиншельвуда с сотрудниками говорят в пользу того, что скорость окисления парафиновых углеводородов сильно зависит от длины цепи. Они окисляли в газовой фазе при одинаковых условиях различные алканы и получали результаты, приведенные' в табл. 149. Можно возразить, что в этих опытах условия протекания процесса отличались от тех, которые используются в технике. Тем не менее экспериментальные данные могут по меньшей мере укрепить нас в мнении, что существуют известные различия, зависящие от молекулярного веса углеводорода.

Зависимость скорости окисления парафиновых углеводородов от длины цепи

что после того, как залежь была сформирована, наступившая в олигоцене трансгрессия разрушила свод складки. Нефть от древней поверхности размыва была отделена маломощными прослоями пород. Сравнение данной нефти с нефтью того же стратиграфического комплекса из залежи, не подвергшейся разрушению, показало, что при окислении резко возросла плотность нефти , уменьшилось количество бензиновых фракций и метановых УВ в них , увеличилось содержание смолисто-асфальтеновых компонентов в них. Суммарный и. с. у. нефтей при этом изменился мало , а и. с. у. ларафино-нафтеновой фракции — существенно . В этой фракции изменились и структурные параметры: степень циклизации усредненной молекулы увеличилась почти в 2 раза, доля углерода в парафиновых цепях сократилась с 62 до 38 % за счет, по всей вероятности, избирательного бактериального окисления парафиновых структур с более тяжелым и, с. у.

Переходя к практическому применению приведенных выше теоретических основ низкотемпературного окисления парафиновых углеводородов, можно указать на незначительный пробел в использовании парафинов между фракцией С3—С4 и твердыми парафинами *.' Следует отметить, что фирмы «Селаниз Корпорейшн» и «Ситиз Сервис Ком-пани» проводят большую работу по окислению пропана и бутана с целью получения алифатических кислот, кетонов и подобных соединений.' Однако эти операции проводятся, по-видимому, при гораздо более высокой температуре , чем рассмотренные в данном обзоре, и об этой работе опубликовано мало литературных данных. Целесообразно завершить данную статью кратким описанием промышленного процесса окисления твердого парафина, применявшегося, в Германии.

Участие поверхности в парофазном частичном окислении парафиновых углеводородов заключается обычно либо в образовании активных центров, либо в разрушении некоторых активных центров. Имеется много данных, свидетельствующих о протекании на поверхности раз-.личных реакций рекомбинации радикалов. С другой стороны, образование продуктов частичного окисления почти никогда не происходит в результате процессов хемисорбции парафиновых углеводородов и -кислорода на каталитической поверхности с последующей химической трансформацией на поверхности и десорбцией, образовавшихся стабильных продуктов в газовую фазу. Реакции, подобные конверсии этилена до окиси этилена на серебряных катализаторах, не обнаружены в случае окисления парафиновых углеводородов*. Вместо этого такие обычные катализаторы окисления, как например, окислы металлов переменной валент-

 

Относительная погрешность. Относительная стоимость. Относительной деформации. Относительной молекулярной. Относительной погрешности.

 

Главная -> Словарь



Яндекс.Метрика