Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Парафиновым углеводородам


Соотношение между парафиновыми углеводородами и мочевиной в комплексных соединениях таково, что на 4 атома С приходится примерно 4 молекулы мочевины, а на 10 атомов С примерно 8 молекул.

С циклогексаном и к-гептаном реакция проходит очень гладко. С высокомолекулярными парафиновыми углеводородами реакция идет с исключительно малыми выходами, так что с технической точки зрения интереса не представляет.

Чистый метилэтилкетон из содержащей его фракции можно выделить добавлением к фракции к-гексана, дающего с метилэтилкетоном азеотропную смесь . Отделяющаяся в качестве головного продукта азеотропная смесь метилэтилкетона и «-гексана разделяется затем при помощи воды, в которой метилэтилкетон растворяется. Из водного раствора метилэтилкетон получают в виде азеотропной смеси с водой, из которой затем воду выделяют в форме азеотропной смеси с пентаном.

Однако высокомолекулярные алифатические углеводороды не удается получать из нефти с той степенью чистоты и однородности, которые требуются для дальнейшей химической переработки. Из каменноугольной смолы фракционированной перегонкой иногда с последующей кристаллизацией легко можно получать индивидуальные соединения. Применение аналогичных методов при переработке нефти вследствие большей сложности ее состава не позволяет достигнуть этой цели. Выделение фракций с широкими пределами кипения, содержащих углеводороды с 10—20 углеродными атомами в молекуле, также непригодно для получения сырья, предназначаемого для последующей химической переработки. Наиболее пригодные для переработки углеводороды нормального строения в подобных широких фракциях представляют собой смеси с парафиновыми углеводородами изостроения , нафтеновыми и ароматическими углеводородами, содержание которых изменяется в весьма широких пределах — в зависимости от происхождения нефти. Присутствие таких примесей отрицательно отражается на процессах переработки. Экстракцией избирательными растворителями, например жидким сернистым ангидридом при процессе Эделеану, возможно разделить подобные смеси на обогащенные ароматическую и парафиновую фракции. Однако парафиновые компоненты в большинстве случаев все еще недостаточно чисты для их дальнейшей химической переработки. Смеси углеводородов, выделяемые из пенсильванской нефти парафинового основания, не могут успешно конкурировать с химически индивидуальными парафиновыми углеводородами нормального строения. Лишь сравнительно недавно разработан метод, позволяющий выделять из нефти парафиновые углеводороды нормального строения при помощи так называемой экстрактивной кристаллизации с мочевиной.

Хлорирование представляет собой самую старую реакцию замещения парафиновых углеводородов. Эта реакция протекает чрезвычайно гладко и совершенно не затрагивает углеродного скелета исходной молекулы. По сравнению с исходными парафиновыми углеводородами хлористые алкилы обладают значительно большей реакционной способностью. Поэтому уже давно реакции галаидирования являлись предметом обширных исследований, так как этим путем надея-

При реакции сульфоокисления двуокись серы и кислород взаимодействуют с парафиновыми углеводородами при ультрафиолетовом облучении или в присутствии органических перекисей, образуя алифатические сульфоновые кислоты. Прямое сульфирование парафиновых углеводородов серной кислотой, аналогичное проводимому с ароматическими углеводородами, невозможно. По-видимому, сульфоокисление позволяет преодолеть этот недостаток.

Крекинг-газы, газы швелевания и отходящие газы синтеза Фишера— Тропша содержат наряду с парафиновыми углеводородами большие или меньшие количества олефинов. Так как указанные газообразные продукты являются в первую очередь сырьем для получения олефинов, то использование их будет рассмотрено во втором томе, посвященном олефинам.

Соединения, образующие комплексы с мочевиной, сильно различаются по склонности к образованию комплексов. Поэтому, применяя количество мочевины, недостаточное для полного связывания всех комплексообразующих компонентов, можно фракционировать их. Если к смеси равных весовых количеств н-октана и w-гексадекана добавить лишь 10% от общего количества мочевины, необходимого для полного связывания обоих углеводородов, то кристаллизующиеся комплексы содержат приблизительно в 10 раз больше гексадекана, чем октана. Стабильность комплексов, образуемых парафиновыми углеводородами с мочевиной, растет с увеличением молекулярного веса, т. е. с увеличением длины углеводородной цепи. Кроме того, стабильность комплексов растет с повышением концентрации мочевины в растворе.

Для кристаллизации комплексов мочевины с парафиновыми углеводородами из нефтей и нефтяных фракций углеводородное сырье разбавляют метилизобутилкетоном, который вследствие разветвленного строения не образует комплексов с мочевиной, и энергично перемешивают этот раствор с концентрированным, насыщенным при высокой температуре раствор'ом мочевины; при этом происходит быстрое взаимодействие.

Способность мочевины избирательно образовывать комплексные продукты присоединения с парафиновыми углеводородами нормального строения используется в исследованиях .

К парафиновым углеводородам, служащим исходным сырьем для нефтехимической промышленности, относятся в первую очередь низкомолекулярные, при нормальных условиях газообразные или жидкие низкокипящие парафиновые углеводороды: метан, этан, пропан, бутаны и пен-тапы.

Под термином сульфохлорирование подразумевают совместное и одновременное действие двуокиси серы и хлора на парафиновые углеводороды при ультрафиолетовом облучении. При этой реакции образуются ароматические сульфохлориды, которые вследствие своей высокой реакционной способности могут вступать в самые различные реакции. Сульфохлорирование представляет собой типичную цепную реакцию. Применение ее для химической переработки парафиновых углеводородов оказалось чрезвычайно плодотворным и работы в этом направлении продолжают быстро развиваться. Сульфохлорирование и сульфоокисление ароматических углеводородов в противоположность парафиновым углеводородам оказалось невозможным. Напротив, эти реакции даже подавляются ароматическими углеводородами и могут служить убедительным примером, доказывающим, что в некоторых случаях парафиновые углеводороды обладают даже большей реакционной способностью, чем ароматические.

При этом процессе замещения, протекающем при высоких температурах в полной темноте, возникают значительные трудности вследствие постепенного образования на катализаторе отложений кокса и смолистых веществ, загрязняющих и дезактивирующих поверхность катализатора. В то же время легко может произойти забивание трубопроводов и смесительных форсунок. Поэтому применительно к парафиновым углеводородам метод гетерогенного каталитического хлорирования не имеет важного значения.

Согласно Вегхоферу этот метод практически нельзя применить к парафиновым углеводородам, которые окисляются очень легко; в случае же трудно окисляемых парафинов процесс протекает гладко. Вегхофер также дает объяснение тому, что парафиновые углеводороды с длинной цепью в противоположность их обычному поведению оказываются заметно менее активными в реакции сульфоокисления, чем углеводороды с короткими цепями. По его мнению, это связано с тем, что углеводороды с длинной цепью гораздо более склонны образовывать перекиси, поэтому присоединение кислорода непосредственно к углероду мешает развитию цепной реакции сульфоокисления.

Реакция протекает в полной темноте и не требует присутствия веществ, являющихся источником свободных радикалов. Инкубационный период отсутствует, и, например, для этана реакция проходит гладко уже при —80°. Скорость реакции настолько- велика, что при хорошем контакте жидкости с кислородом она зависит только от быстроты его подачи. Пролан, бутан и мепазин реагируют легко; али-циклические углеводороды также вступают в эту реакцию. Ароматические углеводороды инертны, но их примеси к парафиновым углеводородам не тормозят процесса.

Из группового состава следует, что деароматизированная. фракция 150—200° мирзаанской нефти содержит 33,4% парафиновых углеводородов, которые в начале принимались в целом за нормальные парафиновые углеводороды с средним молекулярным весом 142, равным молекулярному весу декана. Количество мочевины по отношению к парафиновым углеводородам составляло 8,5 : 1.

Комплексообразование целесообразнее по условиям равновесия проводить при высокой концентрации карбамида и относите/ ьно низкой температуре , что является важным досто — ин :твом процесса. Другим существенным преимуществом карба — мирной депарафинизации является значительно более высокая селективность по отношению к нормальным парафиновым углеводородам, что определяет большой выход денормализата . Однако селективность карбамида снижается с повышением температуры кипения сырья депарафинизации. Поэтому карба — мидная депарафинизация применяется преимущественно для получения низкозастывающих дизельных топлив и маловязких масел.

фяны, полученные из масел грозненской и сурахансксй нефтей, нашел, что узкие фракции тиердого парафина из грозненской нефти по температурам плавления и плотностям близко соответствуют нормальным парафиновым углеводородам соответствующих молекулярных весов. Парафин из сураханской нефти, разогнанный на узкие фракции, имеет температуру плавления приблизительно на 20° ниже, чем нормальные парафиновые углеводороды соответствующих молекулярных весов. Плотности фракций парафина из этой нефти значительно выше, чем плотности нормальных парафиновых углеводородов соответствующих молекулярных весов. Эти

Как указано Платтом, согласие между наблюденными и вычисленными данными находится в пределах до 0,2 мл/молъ или даже еще меньше. Однако уравнение Платта не дает удовлетворительных результатов в применении к высокомолекулярным парафиновым углеводородам, синтезированным по Проекту 42 Американского нефтяного института . Например, соединение PSG № 53 имеет структуру

При погружении твердого вещества в жидкий нефтепродукт выделяется теплота смачивания. Тепловой эффект смачивания зависит от природы вещества и химического состава нефтепродукта. По величине теплоты смачивания можно судить об адсорбируемости различных веществ на том или ином адсорбенте*. Так, например, теплота смачивания силикагеля метиловым спиртом 15,3, этиловым спиртом 14,7, бензолом 8,1, пентаном и гексаном 3,1, а теплота смачивания цеолита NaY к-гептаном составляет 32,2 ккал/кг. Из этих данных видно, что цеолит обладает значительно большей адсорбционной способностью по отношению к нормальным парафиновым углеводородам, чем силикагель. В то же время метиловый и этиловый спирты, а также бензол лучше адсорбируются силикагелем, чем пен тан и гексан.

Из зависимостей, представленных на рис. 4.28, видно, что при одинаковом числе атомов углерода в молекуле реактивные топлива по температуре самовоспламенения близки к парафиновым углеводородам.

 

Получение бутадиена. Получение дополнительных. Получение глицерина. Парофазных процессов. Получение компонентов.

 

Главная -> Словарь



Яндекс.Метрика