Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Результате теплообмена


Последние две причины, а также неравномерное распределение газо-сырьевой смеси по потокам, которое наблюдается в основном при значительном снижении производительности установки, приводят к образованию кокса в трубках змеевиков. Расчеты показали, что пленка кокса толщиной 2 мм повышает температуру стенки трубы на 110—170 °С при теплонапряжениях 23300—35000 Вт/м2. В результате температура стенки трубы может повыситься до 800 °С , и труба прогорает.

Рафинатный раствор, содержащий 0,2—0,3 % пропана, поступает за счет разности давлений с низа колонны 14 в селектовую рафинатную колонну 2. Давление в этой колонне около 0,07 МПа. Уходящая с верха колонны 2 смесь паров селекто и пропана направляется в колонну 23. Холодным орошением колонны 2 является селекто. Тепло, необходимое для удаления растворителя, вносится рафинатом, циркулирующим по схеме: низ колонны 2 - насос 7 - печь 8 - колонна 2. В результате температура низа колонны 2 поддерживается на уровне 330—340 °С.

Повышение температуры окисления в пустотелой колонне сопровождается увеличением температуры в ее газовом пространстве, поскольку выходящие из.барботажного слоя газы имеют более высокую температуру. Капельки жидкости, выносимые из слоя жидкости газом и частично оседающие на стенках газового пространства, также имеют более высокую температуру. Это создает- условия для ускоренного закоксовывания внутренней поверхности газового пространства, горения коксовых отложений или окисления органических паров в тазовом пространстве. В результате температура верха растет с неконтролируемой скоростью — до 320 °С и выше. Для обеспечения стабильности и безопасности производства битумов при температурах окисления выше 280—290 °С в газовое пространство колонн подают инертный газ используется для получения насыщенного пара из горячей воды, а часть — для подогрева воды, поступающей в котел.

При отклонении температуры от заданной, например при ее повышении, пишущее перо потенциометра начинает подниматься вверх по шкале. Это перемещение оказывает воздействие на регулирующий механизм 8, который при помощи сжатого воздуха, по-•ступающего в него по трубопроводу 11, через соединительные трубки 12 передает командный импульс клапану 9; клапан приоткроется, подача пара в насос увеличится, насос начнет работать с большим числом ходов и подача орошения в' колонну увеличится. В результате температура верха колонны понизится до требуемого

пературой выкипания. Вследствие увеличения орошения фракция дизельного топлива при этом также облегчится, но в меньшей степени. Если требуется «утяжелить» фракцию топлива Т-1, т. е. повысить температуру кипения ее, следует, наоборот, приоткрыть задвижку на переточной линии, тогда из колонны в отпарную секцию будет выходить больше дистиллята, а количество орошения уменьшится. В результате температура в секции топлива Т-1 повысится и отбираемый дистиллят утяжелится.

Внешняя работа, производимая расширяющимся газом, определяется в этом процессе не только уменьшением внутренней энергии, но также и энергией, расходуемой на преодоление сил притяжения между молекулами. В результате температура газа снижается на величину А Г, пропорциональную перепаду давления Др. Величина

1. Отложения нагара обладают хорошими теплоизоляционными свойствами и препятствуют теплопередаче от горячих газов к охлаждающей жидкости. Вследствие высокой теплоемкости они поглощают тепло, образующееся при сгорании топлива, и отдают его вновь поступающим порциям смеси, нагревая их до высоких температур. В результате температура в камере сгорания повышается, коэффициент наполнения снижается и, как следствие, снижаются мощностные и экономические показатели двигателя. Кроме того, при повышении температуры быстрее протекают реакции, предшествующие детонации. Поэтому при отложении нагара в камерах сгорания требования двигателя к детонационной стойкости бензинов возрастают. Рост требований к октановому числу бензинов обусловлен не только повышением температуры в камерах сгорания, но и увеличением степени сжатия, так как нагар занимает часть их объема.

ком снижении давления из раствора испаряется практически весь бензин, в результате температура оставшегося продукта снижается. Для предупреждения вспенивания применяют пеноразрушающие присадки. Снизу испарителя расплавленный асфальтит через распределительную емкость при температуре 250 °С равномерно поступает в поддоны барабанных охладителей-кристаллизаторов. Во избежание застывания массы эти аппараты необходимо надежно изолировать. Асфальтит охлаждается до 105—110°С , срезается с поверхности барабанов ножом и по транспортеру направляется в емкость для твердого кускового асфальтита.

Использование тепловой энергии горячих нефтепродуктов. На современных установках первичной перегонки нефти тепловая энергия горячих нефтепродуктов используется для предварительного подогрева нефти, промышленной теплофикационной и химически очищенной воды, для поддержания температуры быстрозасты-вающих продуктов, обогрева емкостей, трубопроводов, трубных лотков и др. На рис. 76 показана наиболее рациональная схема использования тепла горячих потоков для предварительного подогрева нефти на установке АВТ производительностью 2 млн. т/год. Такие установки имеются на многих отечественных нефтезаводах. Как видно из схемы, на установке в результате рационального использования вторичных энергоресурсов нефть предварительно подогревается с 10 до 234 °С. На более старых аналогичных установках нагрев нефти за счет тепла регенерируемых источников не превышает 160—170 °С. В результате теплообмена гудрон охлаждается до сравнительно низкой температуры, и для его доохлаж-дения до температуры хранения требуется значительно меньше воды, чем на ранее построенных установках АВТ.

Ни постепенным, ни тем более однократным испарением невозможно добиться четкого разделения нефтепродукта на узкие фракции, так как часть высококипящих компонентов переходит в дистиллят, а часть низкокипящих остается в жидкой фазе. Поэтому применяют перегонку с дефлегмацией или с ректификацией. Для этого в колбе нагревают нефть или нефтепродукт. Образующиеся при перегонке пары, почти лишенные высококипящих компонентов, охлаждаются в специальном аппарате — дефлегматоре и переходят в жидкое состояние — флегму. Флегма, стекая вниз, встречается со вновь образовавшимися парами. В результате теплообмена низкокипящие компоненты флегмы испаряются, а высококипящие компоненты паров конденсируются. При таком контакте достигается более четкое разделение на фракции, чем без дефлегмации.

На основании проведенных исследований схема возникновения калильного зажигания от нагара представляется следующим образом. Наиболее интенсивное нагарообразование наблюдается на режиме малых нагрузок. При переходе на полные нагрузки температура частиц нагара, укрепившихся на деталях камеры сгорания, а также отслоившихся и находящихся в надпоршневом пространстве, начинает повышаться вследствие увеличения теплонапряженности цикла. Температура частиц нагара непрерывно изменяется в результате теплообмена с окружающими газами. При сгорании и выпуске нагар разогревается горячими газами и температура его повышается, при впуске — частицы нагара охлаждаются свежей смесью. Но нагары не являются простыми «аккумуляторами» тепла, поступающего от горячих газов. Установлено, что вещество нагара при определенных температурах способно химически взаимодействовать с кислородом воздуха, выделяя тепло. Иными словами, при некоторых

В результате теплообмена между паровой фазой и жидкостью на каждой тарелке происходит частичное испарение жидкости и частичная конденсация паров, что обеспечивает определенное изменение концентрации компонентов в жидкой и паровой фазах.

Воздух, предварительно очищенный и охлажденный, под давлением порядка 0,7 МПа подается в змеевик кипятильника колонны 5, где в результате теплообмена он конденсируется. Сжиженный воздух дополнительно охлаждается, проходя через дроссельный вентиль 7, и поступает на питающую тарелку колонны 5. В колонне поддерживается давление в пределах 0,6 МПа. В ходе ректификации в кипятильнике 8 собирается жидкость, содержащая около 40 - 60 % кислорода, как высококипящего компонента. Вследствие теплообмена с воздухом, проходящим по змеевику, часть кубовой жидкости испаряется, и пары, поднимаясь вверх по колонне, контактируют со стекающей жидкостью. Происходит обогащение паровой фазы азотом, массовая доля которого на входе в трубное пространство теплообменника составляет 94 - 96 %. В результате теплообмена с жидким кислородом, стекающим из колонны 2 в межтрубное пространство теплообменника, азот полностью конденсируется, отдавая тепло кипящему кислороду. Этот теплообмен становится возможен вследствие разности давлений в колоннах , а следовательно, температура кипения азота в трубах дефлегматора колонны 5 выше температуры кипения кислорода в кипятильнике колонны 2.

В результате теплообмена на элементе поверхности температура первого теплоносителя понизится на

линдра из того же зернистого материала в нестационарных условиях. Рассмотрим элементарный цилиндр из зернистого материала, который движется по вертикальной трубе сплошным потоком. Радиус этого цилиндра равен внутреннему радиусу трубы, а высота настолько мала, что может быть принята за дифференциал длины. С момента входа этого элементарного цилиндра в трубу он начинает охлаждаться от температуры tn в результате теплообмена с окружающей средой, имеющей температуру tf.

В химической технике очень часто возникает необходимость охлаждать газы, пары и жидкости. Для их охлаждения обычно используют наиболее распространенные и доступные теплоносители — воду и воздух. Охлаждение происходит в результате теплообмена между охлаждаемой и охлаждающей средами, при этом температура охлаждающей среды должна быть ниже температуры охлаждаемой.

В зависимости от агрегатного состояния смешиваемых потоков теплообмен может осуществляться между средами, находящимися в парообразном , жидком или твердом состоянии. Возможны различные случаи — теплообмен между несколькими газами , газом и жидкостью, газом и твердым телом, жидкостью и жидкостью и т.д. В результате теплообмена может измениться состояние теплообменивающихся сред, например, пары частично или полностью сконденсируются, жидкость частично или полностью испарится и т.д.

регенераторов тепла, широко применяемых в процессах селективной очистки и депарафинизации масел. В этих аппаратах тепло частичной или полной конденсации паров используется для нагрева и частичного испарения жидкости. Принципиальная схема подобного аппарата с соответствующими обозначениями показана на рис. ХХП-31. Согласно этой схеме в теплообменный аппарат поступают поток насыщенных паров G,, являющихся теплоотдающей средой, и поток жидкости G2 с температурой t3, которая меньше температуры начала однократного испарения этой жидкости. В результате теплообмена в таком аппарате может произойти частичная или полная конденсация паров G, с последующим охлаждением конденсата . При этом нагреваемый поток G2 частично или полностью испаряется с возможным последующим перегревом паров в случае полного испарения жидкости.

На рис. XXIV-10 представлена конструкция усовершенствованного реактора установки каталитического крекинга Г43-107, предназначенной для переработки вакуумных дистиллятов производительностью 2,0 млн. т/год. Реактор представляет собой вертикальный цилиндрический аппарат переменного сечения. Регенерированный катализатор из регенератора при температуре 650 — 700 °С поступает по напорному стояку в нижнюю часть лифт-реактора, где контактирует с каплями сырья, образовавшимися при прохождении сопла 9. В результате теплообмена катализатор частично охлаждается до температуры 500 — 510 °С, а выделившееся тепло расходуется на нагрев и испарение сырья. При этом начинаются реакции каталитического крекинга с отложением кокса на частицах катализатора. Образовавшийся парогазовый поток транспортирует катализатор вверх по стволу лифт-реактора. Внутренний диаметр лифт-реактора и длину реакционной части определяют исходя из заданной производительности установки по сырью и условий проведения процесса. Отношение длины реакционной части лифт-реактора к его диаметру обычно составляет 71,0.

 

Результаты приводятся. Распределения детонационной. Результаты соответствуют. Результаты структурно. Результаты выделения.

 

Главная -> Словарь



Яндекс.Метрика