|
Главная -> Словарь
Технического прогресса
Адсорбционный процесс отбензинивания природных газов применяется лишь для переработки газов с низким содержанием высокомолекулярных компонентов. Этот процесс основывается на применении в качестве адсорбентов веществ с большой удельной поверхностью. Для этого можно использовать активные угли, получаемые обработкой древесины, торфа и т. д. хлористым цинком с последующим нагревом в слабо окислительной газовой среде. По расчету удельная поверхность высокоактивного угля достигает в среднем 1500 м2/г. Адсорбции способствует также капиллярная конденсация, влияние которой сказывается особенно сильно при адсорбции паров и газовых смесей. Для технического применения процесса важное значение имеет то обстоятельство, что активные угли, сильно адсорбируя углеводородные пары, практически не адсорбируют водяного пара. Поэтому на адсорбцию активными углями можно направлять влажный газ без предварительной его
Четвертый тип масляных растворов парафина, именно пересыщенные растворы, представляют собой системы, способные к ложному застыванию уже при комнатных температурах. Таким образом, если не задаваться определенной температурой, теряется существенное различие между всеми типами растворов кроме первого, не содержащего парафина вовсе. Но в области технического применения масел игнорировать температуру невозможно, и заводское приготовление масел исключает возможность или допустимость приготовления масел, пересыщенных парафином при обыкновенной температуре, — за очень небольшими исключениями, все технические смазочные масла относятся к первым трем типам, а хорошие масла — к первым двум.
Для технического применения масел, особенно смешанных, их Способность высыхать является серьезным недостатком, и предварительное испытание.является одной из очередных задач исследования. Простейшая проба состоит в том, что исследуемое масло тонким слоем распределяется на стеклянной пластинке, которую затем нагревают при доступе воздуха до 50—100°. Раза два в день пробуют консистенцию масляного слоя. Проба эта, вообще говоря, очень продолжительна и неточна. Иногда даже через несколько недель нагревания масло едва приобретает некоторые особенности своего Состояния; неубедительность ее вытекает также и из невозможности ближе определить причину загустения: оно может быть и следствием испарения части масла, т. е. вовсе не характеризовать его с химической стороны.
кислота, этриол и т. д. Примером технического применения метода для четкого разделения смеси веществ, близких по природе и свойствам, является процесс выделения п-ксилола из смеси ароматических углеводородов С8.
Реакция диспропорционирования дает возможность синтезировать олефины разнообразного строения. При этом олефины, не имеющие в настоящее время технического применения, могут быть использованы для Получения важных с промышленной точки зрения непредельных соединений.
Таким образом, определение вязкости в каких-либо условных единицах того или иного вискозиметра еще не дает строгих оснований для точных пересчетов. Между фактическим внутренним трением, выражаемым в абсолютных единицах вязкости, и условными единицами имеется лишь очень приблизительная зависимость. Эта зависимость носит очень сомнительный характер в случае малых вязкостей; между тем в области технического применения смазочных масел сплошь и рядом бывает температура, достаточно высокая для того, чтобы вязкость масла упала до очень низких величин. Технические приборы, за очень малыми исключениями, весьма грубы и не дают возможности судить о вязкости при высоких температурах, между тем во многих случаях вязкость интересна именно при этих условиях. Поэтому вполне понятна наметившаяся в последние годы в нефтяной промышленности тенденция к переходу от условных единиц вязкости к абсолютным.
Третий компонент тяжелых нефтяных остатков — асфальтены. Это наиболее высокомолекулярная и наиболее сложная по элементному составу и молекулярному строению часть нефти. Содержащиеся в асфальтенах металлы и азотистые соединения являются причиной многих трудностей в каталитических процессах переработки тяжелой части нефти. Поэтому в настоящее время нецелесообразно, вероятно, рассматривать асфальтены как химическое сырье для дальнейшей переработки, а необходимо использовать их в качестве продукта непосредственного технического применения для целей изоляции, защитных покрытий металлических поверхностей, наполнителей полимерных материалов и др.
В 1975 г. Е. Фитцер делает попытку охарактеризовать ресурсы и области использования тяжелых нефтяных остатков. Автор пытается оценить и количественные соотношения потребления нефтяных остатков в различных отраслях экономики и техники, в сопоставлении с общими их ресурсами. Основные аспекты работы — производство различных типов технологического углерода на основе высокотемпературной переработки нефтяных остатков, области применения и масштабы потребления технического углерода. Для оценки перспектив развития производства и областей технического применения сажи, кокса, графита, адсорбентов, автор считает необходимым предварительно получить надежную информацию по следующим позициям: спецификация на сырье для производства различных видов технического углерода; возможности модификации этого сырья с целью приведения их свойств в соответствие с требованиями спецификаций и стоимости; спрос рынка и потребности в специальных видах технического углерода, вырабатываемого из нефтяных остатков; экономические показатели — сопоставление стоимости получаемых изделий технического углерода с другими процессами переработки нефтяных остатков и капиталовложения в эти процессы. Не пытаясь дать общую картину развития производства технического углерода на базе переработки нефтяных остатков, автор утверждает, что главное направление использования нефтяных остатков должно быть тесно связано с развитием таких ведущих отраслей промышленности, как, например, алюминиевая, производство стали. Свое утверждение он обосновывает данными о перспективном потреблении кокса в этих отраслях в Западной Европе. Автор справедливо делает вывод, что на производство электродного кокса и пека идет лишь часть нефтяных остатков . Главными же направлениями использования этого нефтепродукта остается топливно-энергетическое потребление: прямое потребление мазута как топлива, а также предварительная переработка по процессам гидрокрекинга, газо-фикации и использование в качестве исходного материала в про-
отбором от потенциала дистиллятов. Вакуумный гудрон из такого типа нефтей может непосредственно использоваться, без дальнейшей обработки, в качестве технического битума для дорожных покрытий и гидроизоляции, для приготовления лаков и т. д. Он может быть также подвергнут термической переработке с целью получения различных типов технического углерода: сажи, кокса, графита. Легкие малосмолистые сернистые нефти по глубине отбора углеводородов от потенциального их содержания должны занять промежуточное положение между двумя названными выше типами нефтей. Процесс асфальтенообразования здесь начнется не раньше, чем когда содержание смол в остатке достигнет 25% при температуре 350—400° С. Эти показатели и должны служить критерием максимальной температуры атмосферно-вакуумной перегонки. Здесь довольно длительным этапом перегонки будет процесс концентрирования смолисто-асфальтеновых веществ в остатке без существенного образования смол и асфальтенов. Вакуумный гудрон может подвергаться окислению с целью получения окисленного битума, применяемого для дорожных покрытий и изготовления кровельных и гидроизоляционных материалов. При коксовании такого гудроаа получается кокс с повышенным содержанием серы, который хотя и находит области технического применения, но не может служить исходным материалом для получения высших сортов кокса для производства электродного графита. О характере зависимости качества нефтяного кокса от элементного состава сырья и, в частности, от содержания серы мы находим довольно обстоятельный материал в монографии . Изложенное выше показывает, что сырые нефти следовало бы сортировать, с учетом содержания неуглеродных компонентов, на следующие группы: высокосмолистые несернистые и малосернистые, смолистые сернистые и высокосернистые, легкие малосмолй-стые сернистые и малосернистые. Эти три группы охватывают практически все нефти промышленных месторождений и вместе с тем позволяют учесть особенности их химического состава при выборе комплекса технологических процессов переработки, обеспечивающего наиболее рациональное использование потенциала сырья. Проблемы комплексной переработки нефти, включая и тяжелую ее часть, широко обсуждались на IX Международном нефтяном конгрессе в Токио .
Необходимо учесть также склонность близких гомологов парафинов образовывать непрерывный ряд твердых растворов. Отсюда становится ясным, что выделение индивидуальных углеводородов даже из наиболее простых и однородных по строению парафинов весьма затруднено, и к нему следует прибегать лишь в редких случаях, когда для специальных целей требуется доводить парафиновое сырье до наиболее глубокой степени разделения, вплоть до выделения отдельных индивидуальных углеводородов. Значительно проще и технически сравнительно легко осуществимо выделение узких фракций нормальных парафинов, содержащих группы углеводородов, близких по молекулярным весам. Более детальное изучение' образцов технических сортов твердого парафина, вырабатываемого нефтяной промышленностью, позволило установить, что в них обычно, преобладают несколько смежных гомологов, содержащих в молекуле от 24 до 30 атомов С. Для технического применения парафина, а также для использования его в качестве химического сырья такие узкие фракции вполне применимы, если только они хорошо очищены от примеси неуглеводородного характера (например, сернистых и кислородных соеди-
Ацетон является исходным веществом для получения целого ряда продуктов, которые имеют промышленное значение как растворители, пленко-образователи, искусственные смолы и т. п. Конденсация ацетона приводит к образованию диацетонового спирта — хорошего растворителя для ацетата целлюлозы, нитроцеллюлозы, хлорвинил-випилацетатных смол. Отщепляя от диацетонового спирта воду, получают окись мезитила, являющуюся превосходным растворителем многих смол. Гидрированием в мягких условиях можно перевести окись мезитила в метилизобутилкетон, для которого существуют многочисленные области технического применения. В первую очередь метилизобутилкетон используют как растворитель для смешанных полимеров винилацетата и хлорвинила, для ацетата и бутирата целлюлозы, ДДТ, пиретрума, как экстрагент пенициллина и других антибиотиков, для депарафинизации смазочных масел и т. п.
15. Блехман. И.И. Что может вибрация: О "вибрационной механике" и вибрационной технике // Серия "Проблемы науки и технического прогресса". М.: Наука, 1988. 208 с.
72. Партон В.В. Механика разрушения. От теории к практике. Серия "Проблемы науки и технического прогресса". М.: Наука, 1990.240с.
Одно из основных направлений технического прогресса в нефтеперерабатывающей и нефтехимической промышленности — строительство высокопроизводительных комбинированных установок. Высокие технико-экономические показатели достигнуты при эксплуатации отечественных комбинированных установок глубокой переработки нефти , производства топлив , установок деасфальтиза-ции и селективной очистки масел, депарафинизации масел и обезмасливания парафинов. Готовятся к пуску отечественные комбинированные маслоблоки КМ-1 и КМ-2, комбинированные установки глубокой переработки нефти КТ-1 и производства ароматических углеводородов и др. .
Проблема генетической классификации нефти, необходимой для научно обоснованного прогнозирования фазового состояния скоплений У В и их состава, находится на начальном этапе изучения. Успешное ее решение позволит ускорить развитие одной из сторон научно-технического прогресса в геологоразведочных работах на нефть и газ. Для дальнейшей разработки этой проблемы необходимы фундаментальные теоретические исследования, связанные с изучением реликтовых структур нефти и 0В, их устойчивости и трансформации при воздействии различных факторов, моделирование этих процессов.
Жизнь человеческого общества на всех этапах его развития неразрывно связана с использованием различных форм энергии. Особенно повысилась ее роль в связи с ускорением технического прогресса во второй половине XX века. Потребление энергии в мире непрерывно растет. Так, за первые 50 лет текущего столетия оно увеличилось в 3 раза, а за последующие 30 лет — в 3,5 раза . На земном шаре добывается более 10 млрд. т условного топлива , в том числе в Советском Союзе более 2 млрд. . Однако доля эффективного использования энергии во всем мире не составляет и половины от ее производства.
Химмотология как теория и практика рационального применения топлив, масел, смазок и специальных жидкостей в технике возникла и развивается как объективная реальность и необходимость на базе общего научно-технического прогресса в нашей стране и за рубежом и, в частности, на основе непрерывно ускоряющегося развития техники. Химмотология развивалась вместе с техникой, так как создание уже первых двигателей внутреннего сгорания и соответствующих механизмов потребовало решения многих достаточно сложных инженерно-технических и научных задач по правильному выбору и рациональному применению топлив и смазочных материалов в технике. На сегодняшний день бесспорным является факт существования и большой практической значимости этой самостоятельной отрасли науки и техники.
ных изобретательности и терпения но усовершенствованию аппаратуры, но не следует забывать и еще не решенных трудностей и проблем сегодняшнего дня. Следует признать также, что промышленность крэкинга действительно находится на поворотном пункте своей истории. Выходы, которых она достигла, в рамках реализованного до сих пор технического прогресса в развитии крэкинг-установок, являются максимальными. Чтобы прогрессировать далее, нужно открыть другие! двери и решить, другие проблемы. К этим задачам мы теперь и перейдем,
В результате научно-технического прогресса за треть века произошли гигантские сдвиги в развитии,геологии, геофизики и геохимии, обеспечившие быстрое расширение познаний о возможных анергосырьевых ресурсах
Первые два фактора просты в оценке и их давно используют в практике; во многих случаях они определяют качество нефтепродуктов, вырабатываемых в настоящее время. Наибольшего внимания и развития в ближайшее время требуют исследования и расчеты по третьему и четвертому направлениям. Оценка экономического эффекта от повышения качества нефтепродуктов должна своевременно определять эффективные направления дальнейшего технического прогресса как в нефтеперерабатывающей
По комплексу методов квалификационной оценки был испытан и по результатам допущен к применению авиационный бензин Б-70, полученный на базе деароматизированного бензина каталитического риформинга. С помощью комплекса методов была решена проблема замены привозного сырья на местное для выработки авиационных бензинов на одном из заводов. Для автомобильных бензинов с помощью комплекса методов была уточнена рецептура приготовления бензина АИ-93 на одном из заводов, намечены пути улучшения качества этиловой жидкости ' и т. д. Применение комплексов методов квалификационной оценки уже дало по самым скромным подсчетам многомиллионную экономию, и, безусловно, способствовало ускорению технического прогресса.
5. Следует ожидать существенных изменений в формировании баланса транспортных тошгав. Количественные изменения в таком балансе будут акцентироваться на керосиногагюйлевых фракциях в связи с опережающим ростом к 2000 г. спроса на дизельное и реактивное топлива при стабилизации или даже сокращении спроса на автомобильный бензин углеводородного типа. 1J составе последнего будет сокращаться роль ароматических углеводородов в связи с расширением их ресурсов для нефтехимии и можно ожидать компенсирующее нарастание роли алкогольных добавок , а также высокооктановых ;фиров . Изопарафиновые компоненты бензина еще будут играть роль, но при условии обеспечения значительного технического прогресса в их производстве. Чрезвычайный интерес представляет модернизация каталитического синтеза изоалканов с помощью новых высокоактивных цеолитных катализаторов либо перевод существующих жидкокислотных процессов алкилирйвания на гетерогенные кислотные катализаторы твердополимерной природы. Можно ожидать существенной модернизации всех катализаторов гидродиспропорциони-рования углеводородов и их изомеризации. Технологии коксования. Тщательно уплотняют. Технологии перегонки. Технологии приготовления. Технологии разработанной.
Главная -> Словарь
|
|