Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Углеводородного растворителя


При наличии кристаллогидратов и углеводородного конденсата нормальная эксплуатация газопровода может быть нарушена или сильно затруднена, так как кристаллогидраты закупоривают рабочее пространство газопровода, а углеводородный конденсат скапливается в «низких» местах трассы, в результате чего увеличивается гидравлическое сопротивление системы. При этом возникают пульсации давления, которые могут привести к нарушению режима эксплуатации газопровода и возникновению аварийной обстановки.

Укрупнение мощностей ГПЗ — это основа ускоренного развития газоперерабатывающей промышленности. Однако решение этого вопроса обусловливается не только наличием высокопроизводительного оборудования, но и условиями, при которых можно было бы длительное время обеспечивать заводы сырьевыми ресурсами. Для этого необходимо разработать систему резервирования сырьевой базы ГПЗ. Под резервированием понимается комплекс мероприятий, начиная от рационального использования запасов газа и размещения ГПЗ и кончая разработкой схем транспортирования и переработки газа. При этом большое значение имеет разработка мер по обеспечению совместного транспортирования газа и углеводородного конденсата, а также дифференцированный подход к глубине извлечения углеводородов в районах добычи газа и переработки его на ГПЗ, расположенных по трассе газопроводов . Разработка системы резервирования — это многоплановая задача, решать ее необходимо комплексно, исходя из условий рационального использования ресурсов нефтяных и природных газов.

В нижней части сепаратора 3 имеется встроенный теплообменник , в трубное пространство которого подается водяной пар. Это позволяет поддерживать температуру продукта в нижней части сепаратора выше той, при которой образуется стойкая эмульсия «гликоль — углеводороды» . В результате создаются условия для более четкого разделения обводненного гликоля от углеводородного конденсата и обеспечивается снижение потерь ингибитора гидратообразования. Углеводородный конденсат, выходящий из сепаратора 3, служит сырьем для производства соответствующей продукции, а обводненный гликоль поступает в регенератор 4, где от него отпаривается вода, после чего дегидратированный до определенного влагосодержания гликоль вновь впрыскивается в поток сырого газа перед теплообменником 2. Ниже приведены основные показатели технологического режима ряда промышленных установок осушки газа, работающих по такой схеме:

При накоплении в системе углеводородного конденсата абсорбционная способность гликолей уменьшается. Иногда при попадании конденсата в абсорбер происходит вспенивание раствора, что приводит к механическому уносу гликоля .

Как правило, на промыслах проводится отделение углеводородного конденсата и воды. При обработке газа в отсутствии сероводорода эта вода направляется на дальнейшую утилизацию. Если же газ содержит сероводород, то полученную в системе промысловой обработки воду необходимо подвергать дегазации для удаления H2S. Однако выделившийся при дегазации воды сероводород нельзя выбрасывать в атмосферу или сжигать, а необходимо компримировать и направлять в основной газовый поток или переводить в нетоксичные сернистые соединения. Компримирование газа дегазации требует установки специальных компрессоров, так как выделившийся сероводород насыщен

Данную схему используют также для очистки газов дегазации углеводородного конденсата. Извлечение кислых компонентов осуществляют подачей противотоком катализаторного комплекса насосами 5 и 6 в верхнюю часть абсорбера 1. Катализаторный комплекс представляет собой полифталоцианин кобальта, растворенный в смешенном абсорбенте, состоящем из диэтаноламина, диметилацетамина и воды. В случае применения смешанного абсорбента поглощение сероводорода и двуокиси углерода происходит главным образом за счет химического взаимодействия с диэтаноламином, тиолов - за счет их физического растворения. Условия абсорбции: давление 5,8...6 МПа, температура 20...35°С. Насыщенный кислыми компонентами катализаторный комплекс из куба абсорбера поступает в экспанзер 2, где при снижении давления до 0,4 МПа удаляются физические растворенные углеводороды. Дегазированный поглотитель насосом 3 направляют на окислительную регенерацию в реактор змеевикового типа 4. Регенерацию осуществляют кислородом воздуха, подаваемым в поток из расчета 2...2,5 нм3 на 1 м3насыщенного катализаторного комплекса. Регенерированный катализаторный комплекс с образовавшейся в результате окисления сероводорода элементной серой поступает в емкость 7. С верха емкости 7 серу пенной флотацией удаляют на фильтр 8. Основную часть регенерированного раствора из емкости 7 насосом 6 направляют в абсорбер 1, остальное количество - насосом 9 в отгонную колонну для дегазации от двуокиси углерода и испарения воды. На установке достигается глубокая степень очистки газа от всех кислых компонентов.

Наличие стабильной сырьевой бады и растущая потребность в компонентах природного газа в нефтехимической и других отраслях являются основой дальнейшего развития газопереработки. Природный газ представляет собой сложную смесь легких углеводородов и неуглеводородных компонентов, таких как сероводород, меркаптаны, диоксид углерода, азот, гелий и т.п. Соотношение этих компонентов в сырье может изменяться в широких пределах и будет оказывать влияние на выбор поточной схемы газоперерабатывающих заводов и перечень получаемых товарных продуктов. Физическая переработка природного газа в большинстве случаев сводится к сепарации сырьевого газа с целью отделения влаги, механических примесей и углеводородного конденсата, извлечению из отбензиненного газа нежелательных компонентов , абсорбционной и адсорбционной осушке и разделению углеводородной части на узкие фракции или индивидуальные компоненты.

В летнее время температура воды в открытых водоемах, обычно питающих системы водоснабжения нефтяных предприятий, достигает 25°. При использовании этой воды для охлаждения газов наименьшая температура углеводородного конденсата будет практически не ниже 30°. Чтобы при этой температуре сконденсировать чистый бутан, нужно конденсацию вести под давлением 2,8 ата.

Как правило, на промыслах проводится отделение углеводородного конденсата и воды. При обработке газа в отсутствии сероводорода эта вода направляется на дальнейшую утилизацию. Если же газ содержит сероводород, то полученную в системе промысловой обработки воду необходимо подвергать дегазации для удаления H2S. Однако выделившийся при дегазации воды сероводород нельзя выбрасывать в атмосферу или сжигать, а необходимо компримировать и направлять в основной газовый поток или переводить в нетоксичные сернистые соединения. Компримирование газа дегазации требует установки специальных компрессоров, так как выделившийся сероводород насыщен

Данную схему используют также для очистки газов дегазации углеводородного конденсата. Извлечение кислых компонентов осуществляют подачей противотоком катализаторного комплекса насосами 5 и 6 в верхнюю часть абсорбера 1. Катализаторный комплекс представляет собой полифталоцианин кобальта, растворенный в смешенном абсорбенте, состоящем из диэтаноламина, диметилацетамина и воды. В случае применения смешанного абсорбента поглощение сероводорода и двуокиси углерода происходит главным образом за счет химического взаимодействия с диэтаноламином, тиолов - за счет их физического растворения. Условия абсорбции: давление 5,8...6 МПа, температура 20...35°С. Насыщенный кислыми компонентами катализаторный комплекс из куба абсорбера поступает в экспанзер 2, где при снижении давления до 0,4 МПа удаляются физические растворенные углеводороды. Дегазированный поглотитель насосом 3 направляют на окислительную регенерацию в реактор змеевикового типа 4. Регенерацию осуществляют кислородом воздуха, подаваемым в поток из расчета 2...2,5 нм3 на 1 м3насыщенного катализаторного комплекса. Регенерированный катализаторный комплекс с образовавшейся в результате окисления сероводорода элементной серой поступает в емкость 7. С верха емкости 7 серу пенной флотацией удаляют на фильтр 8. Основную часть регенерированного раствора из емкости 7 насосом 6 направляют в абсорбер 1, остальное количество - насосом 9 в отгонную колонну для дегазации от двуокиси углерода и испарения воды. На установке достигается глубокая степень очистки газа от всех кислых компонентов.

в углеводородном конденсате + 5 % влаги в смеси водного и углеводородного конденсата

Возрастание растворимости парафина с понижением молекулярного веса углеводородного растворителя наблюдается только

до С6. При дальнейшем снижении молекулярного веса растворителя растворяющая способность его в отношении парафина начинает резко падать, и в сжиженных нефтяных газах растворимость парафина от бутана к метану уменьшается. Изменение растворимости парафина tna = 50° с изменением молекулярного веса углеводородного растворителя, по данным Бальке с сотрудниками , показано на рис. 13.

.Вопросу подбора для разных условий карбамидной депара-финизации растворителей-активаторов и установлению величины их оптимальной добавки посвящено большое количество исследований как советских, так и зарубежных авторов . В перечисленных работах можно найти дальнейшие по- \ дробности по выбору активаторов. В работе А. М. Кулиева с сотрудниками указывается, в частности, что потребное количество активатора зависит от его природы . Так, при депарафинизации дистиллятов сураханской нефти в растворе углеводородного растворителя оптимальное количество вводимого активатора составляет: метилового спирта — 2%, этилового спирта — 4%, изопропилового спирта — 25% и ацетона или ме-тилэтилкетона — 50%. При применении в качестве активатора изопропилового спирта важное значение имеет содержание в нем воды, которое должно составлять 8—9% . Роль воды в этом активаторе заключается, по мнению авторов, в повышении растворимости в нем карбамида, который в безводном изопропило-вом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно.

При разбавлении комплексообразующей смеси инертными растворителями равновесие по уравнению сдвигается плево и одновременно снижается выход комплекса. Однако в присутствии твердого реагента полезно некоторое разбавление системы для облегчения перемешивания. Необходимо также обеспечить достаточное количество углеводородного растворителя, чтобы предотвратить кристаллизацию компонентов парафина. Таким образом, вводимый растворитель не должен быть насыщен парафином, который иначе при разбавлении активатором будет осаждаться и выделяться

О 10 20 30 40 50 ВО 70 80 SO Молекулярный вес углеводородного растворителя

Есть сообщение об отстаивании комплекса-сырца от дизельного топлива в пульса'щюняом аппарате . В исследованном интервале интенсивности пульсация значительно увеличивает скорость расслоения суспензии, при этом изменение параметров пульсации существенно не влияет на ход процесса. Влияние пульсации объясняется, по-видимому, разрушением гелеобразной структуры взвеси комплекса в спирте при механическом воздействии на него. Динамика расслоения суспензии, оцененная по количеству ароматических углеводородов, остающихся в парафине после разложения отстоявшегося комплекса, представлена на рис. 104. Из этих данных следует, что при пульсационном расслоении четкость разделения, эквивалентная четкости в промышленном отстойнике, достигается за 15—20 мин вместо 1,5 ч без пульсации. Разработан метод получения нормальных парафиновых углеводородов высокой чистоты при депарафинизации нефтепродуктов спирто-водным раствором карбамида. Высокая четкость гравитационного разделения фаз в разработанном процессе обеспечивает получение из такого сырья, как дизельное топливо ромаш-кинской нефти, парафинов с содержанием комплексообразующих углеводородов 93—93,5%, в том числе н-алканов 98%, ароматических — около 1%. При этом расход углеводородного растворителя на промывку суспензии комплекса составляет 75—100% на исходное-топливо, что в несколько раз меньше такового в других схемах карбамидной депарафинизации с разделением фаз на фильтрах или центрифугах. В работах в том или ином варианте предлагается применять прессование низкомолекулярных ароматических углеводородов , что снижает окисляющее действие серного ангидрида, повышает степень сульфирования и позволяет отделить кислый гидрон от вязкого масла без добавления каких-либо растворителей . Чтобы ускорить очистку присадки и повысить ее эффективность перед обработкой углекислым газом в реакционную смесь, состоящую из сульфоната щелочноземельного металла или аммония, минерального масла, гидроксида щелочноземельного металла, воды, углеводородного растворителя и промотора , вводят 0,01—0,1 % поли-силоксана .

Высокощелочную присадку получают перемешиванием смеси оксида магния, маслорастворимого нейтрального сульфоната, масла-разбавителя и низкокипящего углеводородного растворителя. Затем "к этой смеси добавляют воду и проводят карбонатацию в присутствии промотора — карбонатирован-ного водного аммиака и метилового спирта.

Нафтенат кобальта отделяют от водного раствора и направляют в карбонилообразователь, где он под действием смеси СО+Н2 переходит в карбонилы. Оказалось, что серную и нафтеновую кислоты можно заменить на уксусную и получать карбонилы из смеси водного раствора ацетата кобальта и углеводородного растворителя.

Необходимое для процесса количество активатора зависит от его природы. Так, для депарафинизации дистиллятов грозненской нефти-в растворе углеводородного растворителя требуется метилового спирта 2/5 , этилового спирта 25% , ацетона или иетилэтил-кетона 40% . При использовании в качестве активатора пропштового спирта очень важно, чтобы содержание в нем воды было 8-9% .Вода увеличивает растворимость карбамида, который в безводном изопро-пиловом спирте, особенно в присутствии углеводородного растворителя, растворяется недостаточно. Однако при содержании воды более 9% процесс комплексообразования ухудшается. Безводные активаторы, как правило, не способствуют протеканию реакции комплексообразования.

 

Удовлетворять определенным. Углеводородов получается. Углеводородов полученных. Углеводородов поступает. Углеводородов позволяет.

 

Главная -> Словарь



Яндекс.Метрика