|
Главная -> Словарь
Углеводородов оказывают
На вязкостные свойства полициклических углеводородов оказывает влияние не только число, но и положение колец в молекулах. Так, сопоставление нафтенов и ароматических углеводородов с различным расположением колец при одном и том же числе атомов угле-
Из отдельных элементов структуры молекул на величину температуры плавления углеводорода сказывается местоположение боковых радикалов, их число в молекуле, длина входящих в молекулу прямых алкильных цепей и т. д. На способность кристаллизоваться и на величину температуры плавления циклических углеводородов оказывает большое влияние также и местоположение колец среди других радикалов.
4. Тетралин и нафталин* в сходных условиях гидрирования ведут себя так же, как и 1,2-диалкилбензолы, а 1,3,5-триалкилбензолы — как 1,3-диалкил бензолы. Значительное влияние на стереоселективность гидрирования ароматических углеводородов оказывает не только природа используемого металла, но и относительное содержание его в катализаторе. При гидрировании о- и /г-кси-лолов на Rh/C с ростом концентрации металла в катализаторе заметно увеличивается содержание гранс-форм соответствующих диметилциклогексанов; содержание же транс- 1,3-диметилциклогексана при гидрировании м-ксилола, наоборот, несколько уменьшается. Соответствующие данные приведены в работе .
Из приведенных данных видно, что на выход ароматических углеводородов оказывает существенное влияние фракционный состав сырья. Получая при риформинге фракций 62—85°С и 62—105°С от 24 до 31% ароматики , при риформинге фракций 105—140°С и 120—140°С выход ароматики достигает 45—48% на сырье .
Строение ароматических углеводородов оказывает существенное влияние на нагарообразование. С повышением молекулярного веса углеводорода и температуры его кипения влияние на нагарообразование, как правило, увеличивается. Следует полагать, что в процессе образования нагара в карбюраторном двигателе, испаряемость углеводородов приобретает решающее значение. Низкокипящие ароматические углеводороды , по-видимому, успевают испариться во впускной системе двигателя, и в предпламенных стадиях, находясь в паровой фазе, практически не подвергаются предварительному окислению, конденсации и уплотнению с последующим образованием углеродистых продуктов, составляющих нагар. Высококипящие ароматические углеводороды, долгое время оставаясь в жидкой фазе, под воздействием высоких температур претерпевают окислительные превращения и, очевидно, служат источником образования нагара.
Таким образом, из всего рассмотренного материала можно сделать " несколько достаточно определенных выводов: на скорость гидрирования полициклических углеводородов оказывает влияние наличие в них связей с повышенной электронной плотностью, вследствие чего ди- и трициклические углеводороды, а также большая часть более конденсированных углеводородов гидрируются, как правило, быстрее моноциклических; линеарные конденсированные углеводороды гидри-руютсябыстдее ангударньтх. и -сдмм?ХЩчньш_ гидрирование^ jtajs... •ярябило7 протекает ступенчато, причем скорость каждой последу-Яйцей .ступени меньше предыдущей; заместители и гидрированные" кольца тормозят гидрирование.
го влияния количества ароматических углеводородов в топливе на энергетические показатели двигателя не выявлено. Дымность отработавших газов снижается в среднем на 30% при уменьшении содержания ароматических углеводородов от 24 до 16%. Дальнейшее снижение содержания ароматических углеводородов оказывает меньшее влияние на дымность отработавших газов.
Склонность какого-либо моторного топлива к детонации определяется природой углеводородов, входящих в его состав, и их процентным соотношением. Выяснилось, что решающее влияние на детонационные свойства углеводородов оказывает их химическое строение.
Никелевый катализатор, также применяющийся для синтеза углеводородов, оказывает еще более сильное гидрирующее действие, так что при нем выход олефипов еще меньше.
Содержание непредельных углеводородов оказывает • решающее влияние на скорость образования смол в топливах . В бензинах, содержащих 30—70 % непредельных углеводородов, скорость образования смол превышает скорость осмоления прямогонных бензинов в 20—40 раз.
Наличие в природном газе помимо метана других углеводородов оказывает различное влияние на синтез сероуглерода. Этан легко реагирует с серой при этих же температурах по реакции
Температура, давление, состав смеси и химические свойства углеводородов оказывают определяющее влияние на стабильность образующихся свободных радикалов и направление окислительного процесса в целом i.
Особенно большое влияние ,на окисление смесей углеводородов оказывают непредельные углеводороды. В их присутствии окислению иногда подвергаются и такие углеводороды, которые сами по себе в этих условиях не окисляются. Следует отметить, что даже небольшое количество реакционноспособных непредельных углеводородов, таких, как диеновые и алкилароматические с двойной связью в боковой цепи, делает практически любую смесь углеводородов способной к окислению кислородом воздуха при обычных температурах.
теснение этих углеводородов из раствора. Таким образом, при понижении температуры -влияние дисперсионных сил постепенно ослабевает, в то время как влияние полярных сил увеличивается. При повышенных температурах основное влияние на растворимость углеводородов оказывают дисперсионные силы, так как в этом случае из-за увеличения теплового движения молекул ориентация их под действием электрического поля молекул растворителя затрудняется. Растворимость твердых углеводородов в полярных и неполярных растворителях ниже, чем жидких. Это объясняется их слабой поляризуемостью; кроме того, нормальное строение парафиновых углеводородов обусловливает возможность сближения их молекул с образованием кристаллов.
Большое влияние на структуру кристаллов твердых углеводородов оказывают смолы и асфальтены — естественные поверхностно-активные вещества, в присутствии которых происходит дендритная или агрегатная кристаллизация. Дендритная кристаллизация характеризуется тем, что из раствора выделяются не монокристаллы, образовавшиеся из единого центра кристаллизации, а структура недоразвитых монокристаллов, выделившихся на мно-
ный перечень синтетических присадок, исследованных для улучшения показателей процесса депарафинизации нефтяного сырья. Как указывалось выше, большое влияние на процесс кристаллизации твердых углеводородов оказывают смолистые вещества, содержащиеся в рафинатах. Вследствие неоднородности этих веществ в зависимости от содержания в их молекулах тех или иных структурных групп форма и размер кристаллов твердых углеводородов могут быть различными, что особенно важно при использовании поверхностно-активных присадок в качестве модификаторов структуры твердых углеводородов.
теснение этих углеводородов из раствора. Таким образом, при понижении температуры 'влияние дисперсионных сил постепенно ослабевает, в то время как влияние полярных сил увеличивается. При повышенных температурах основное влияние на растворимость углеводородов оказывают дисперсионные силы, так как в этом случае из-за увеличения теплового движения молекул ориентация их под действием электрического поля молекул растворителя затрудняется. Растворимость твердых углеводородов в полярных и неполярных растворителях ниже, чем жидких. Это объясняется их слабой поляризуемостью; кроме того, нормальное строение парафиновых углеводородов обусловливает возможность сближения их молекул с образованием кристаллов.
Большое влияние на структуру кристаллов твердых углеводородов оказывают смолы и асфальтены — естественные поверхностно-активные вещества, в присутствии которых происходит дендритная или агрегатная кристаллизация. Дендритная кристаллизация характеризуется тем, что из раствора выделяются не монокристаллы, образовавшиеся из единого центра кристаллизации, а структура недоразвитых монокристаллов, выделившихся на мно-
ный перечень синтетических присадок, исследованных для улучшения показателей процесса депарафинизации нефтяного сырья. Как указывалось выше, большое влияние на процесс кристаллизации твердых углеводородов оказывают смолистые вещества, содержащиеся в рафинатах. Вследствие неоднородности этих веществ в зависимости от содержания в их молекулах тех или иных структурных групп форма и размер кристаллов твердых углеводородов могут быть различными, что особенно важно при использовании поверхностно-активных присадок в качестве модификаторов структуры твердых углеводородов.
На скорость и направление реакции термического крекинга смеси углеводородов оказывают существенное влияние следующие факторы:
В процессе под повышенным давлением могут заметно изменяться и ароматические углеводороды. Реакции гидрирования, деструктивного распада и изомеризации ароматических углеводородов оказывают свое влияние на конечное общее превращение. Поэтому повышение давления обычно ограничивают пределами 36—45 am.
Как и при алкилировании изопарафиновых углеводородов, на процесс алкилирования ароматических углеводородов оказывают влияние такие факторы, как температура, давление и катализаторы. В качестве катализаторов для алкилирования ароматических углеводородов используют безводный хлористый алюминий, фосфорную кислоту на носителе, концентрированную серную кислоту, алюмосиликаты, фтористый водород, а также комплексные катализаторы типа НзРО4 • ВРз. В зависимости от того, в какой фазе протекает процесс алкилирования, применяется тот или иной катализатор. Так, хлористый алюминий и серная кислота применяются при алкилировании в жидкой фазе, а фосфорная кислота на носителе — при парофазном процессе.
Твердые углеводороды масел при низких температурах и соответствующей кратности растворителя почти полностью выделяются из раствора. Их растворимость в полярных растворителях так же, как и части циклических углеводородов с длинными боковыми цепями, является результатом действия дисперсионных сил. Растворимость остальных циклических углеводородов и смол определяется индукционным, а смол-ориентационным взаимодействиями. При понижении температуры влияние дисперсионных сил постепенно ослабевает, в то время как действие полярных сил усиливается. При повышенных температурах основное влияние на растворимость углеводородов оказывают дисперсионные силы, так как из-за увеличения теплового движения молекул ориентация их под действием электрического поля молекул растворителя затрудняется. Растворимость твердых углеводородов в полярных и неполярных растворителях ниже, чем жидких, что объясняется их слабой поляризуемостью, и, кроме того, строение к-алканов обусловливает возможность сближения их молекул с образованием кристаллов. Углеводородов состоящих. Углеводородов становится. Углеводородов температуры. Углеводородов туймазинской. Углеводородов выделенные.
Главная -> Словарь
|
|