Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Растворенным кислородом


Сжатая до 15 ат смесь, поступающая в колонну частично в жидком, а частично в газообразном состоянии, разделяется на две фракции. В кипятильнике колонны собираются хлорированные продукты; так как' температуру в нижней секции колонны поддерживают в пределах 60— 100°, хлорированные продукты практически не содержат растворенных углеводородов.

Для фурфурола потери растворителя, как сообщалось в литературе, составляют от 0,01 до 0,02% от циркулируемого количества. 60% этих потерь вызывается образованием полимеров и 40% физическими причинами. В присутствии кислорода, воды или ненасыщенных углеводородов фурфурол чувствителен к повышению температуры, в результате чего происходит автокаталитичсская полимеризация. По этой причине в циркулирующем растворителе сохраняется 4—6% воды, при наличии которой температура подогревателя для растворителя снижается с 171 до 157°. Однако вследствие наличия воды допустимая концентрация растворенных углеводородов не может превышать определенного предела. Для уменьшения образования полимеров и осадка к этому растворителю добавляются специальные ингибиторы.

Смесь альдегидов нагревается до 50° С в подогревателе и поступает в колонну, где в качестве верхнего продукта выделяется основное количество растворенных углеводородов и некоторое количество альдегидов. Верхний продукт поступает сначала в конденсатор, затем в сепаратор, где отделяется около 40% увлеченных альдегидов. Газ, содержащий остальное количество увлеченных альдегидов, поступает в абсорбционно-отпарную колонну, где улавливаются альдегиды. Абсорбентом в колонне 2 служат кубовые остатки, выделяемые в колонне 3. Стабильные продукты из колонны 1, сепаратора 1 и колонны 2 поступают в колонну 3 для отделения кубовых остатков —продуктов уплотнения, содержащих альдегиды С8, ацетали, сложные эфиры и высококипящие углеводороды. Отпаренный альдегидный продукт конденсируется, охлаждается и отводится в промежуточную емкость. Часть альдегидного продукта подается на орошение колонны 3. Нижний продукт частично подается на орошение колонны 2, а избыточное его количество может быть переработано путем гидрирования. Из промежуточной емкости альдегиды вместе с водой, являющейся разделяющим агентом, подаются на колонну 4, где разделяются масляные альдегиды. Для разделения альдегидов могут использоваться или тарельчатые, или насадочные колонны. Сверху колонны отбирается изомасляный альдегид, который конденсируется, охлаждается и подается на дальнейшее использование . Нижний продукт, содержащий к-масляный альдегид

Абсорбционный метод отбензинивания газов является наиболее распространенным. Процесс основан на избирательном поглощении жидкостью отдельных компонентов газовой смеси. В качестве абсорбента применяют бензин, керосин или солярный дистиллят. Чем тяжелее углеводороды, тем больше их растворяется в абсорбенте. Количество растворенных углеводородов возрастает с повышением давления и понижением температуры .

Верхний спирто-водный слой удаляют сифоном, а нижний фильтруют на воронке с отсасыванием. В фильтрате получают желтую маслянистую жидкость, состоящую из продукта реакции в смеси с непрореагировавшей частью исследуемого вещества. Для удаления растворенных углеводородов * маслянистую жидкость нагревают в вакууме на водяной бане; дистиллят собирают в приемник, помещенный в охладительную смесь.

кислыми компонентами и содержащий некоторое количество углеводородов. Растворение компонентов газа в "Селексоле" сопровождается лишь незначительным выделением теплоты, и поэтому нет необходимости в дополнительном теплосъеме. Поток насыщенного абсорбента дросселируется и поступает в дегазатор для выделения растворенных углеводородов. Жидкая фаза из дегазатора первой ступени вновь проходит через дроссель и при давлении, близком к атмосферному, поступает на вторую ступень дегазации. Газы с двух ступеней дегазации объединяются, компримируются, охлаждаются и возвращаются в сырьевой поток перед подачей в абсорбер. Жидкая фаза из дегазатора второй ступени подогревается в рекуперативном теплообменнике регенерированным абсорбентом и поступает на питание в десорбер. Верхний продукт десорбера проходит через воздушный холодильник и поступает в газосепаратор, откуда жидкая фаза возвращается на орошение в десорбер, а газовая фаза направляется на установки получения серы. Для повышения степени регенерации вниз десорбера могут для отдувки подавать топливный или любой инертный газ.

7 МПа поступает во входной сепаратор С-1 для отделения капельной жидкости сконденсировавшейся влаги и тяжелых углеводородов. Газ из сепаратора подается на очистку в абсорбционную колонну К-1, на верх которой подается регенерированный абсорбент "Сульфинол". Очищенный газ из К-1 поступает в сепаратор С-2 для отделения унесенного абсорбента, который объединяется с потоком регенерированного абсорбента и возвращается в К-1. Насыщенный абсорбент с низа К-1 направляется в экспанзер, где за счет понижения давления происходит выделение растворенных углеводородов. Количество газов дегазации в этом процессе ввиду повышенной растворимости углеводородов в физическом абсорбенте значительно больше, чем в процессах аминовой очистки, причем и содержание H2S в них выше. Поэтому целесообразно осуществлять очистку экспанзерного газа в отдельной колонне. В приведенном варианте схемы абсорбер К-2 для очистки экспанзерного газа выполнен в одном корпусе с дегазатором В-1. Часть регенерированного абсорбента подается на верхнюю тарелку К-2. В других вариантах схемы экспанзер-ный газ может возвращаться в лоток сырьевого газа после компримирования его до первоначального давления. Частично дегазированный абсорбент после В-1 подогревается в теплообменнике Т-1 обратным потоком регенерированного Сульфинола и поступает на регенерацию в К-3. Кислый газ с верха К-2 проходит через холодильник Х-2 для конденсации паров унесенного абсорбента и поступает в емкость орошения. Кислые газы направляются на установки получения серы, а Сульфинол поступает на верхнюю тарелку К-3 в качестве орошения. Для поддержания температуры десорбции часть абсорбента подогревается в испарителе И-1. Регенерированный Сульфинол с низа К-3 насосом Н-3 подается после охлаждения в рекуперативном теплообменнике Т-1 и водяном холодильнике Х-1 в абсорбционные колонны К-1 и К-2.

Насыщенный гликоль отводится с низа сепаратора 5, подогревается в теплообменниках 8 и 9 и подвергается двухступенчатой дегазации для отделения растворенных углеводородов, которые из дегазаторов 10 и // направляются в топливную сеть завода. Дегазаторы 10 и // представляют собой трехфазные сепараторы, предназначенные для разделения поступающего потока на газ, углеводородный конденсат и насыщенный гликоль. Углеводородный конденсат из сепараторов 10 и // направляется на установку стабилизации конденсата. Насыщенный водой гликоль после дегазаторов подогревается в теплообменнике /5 потоком регенерированного гликоля и поступает на питание в верхнюю часть насадочной колонны регенерации 12. Стекая вниз по насадке, гликоль подогревается. Влага при этом постепенно переходит в паровую фазу и поднимается на верх колонны. Гликоль подогревается в ребойлере 13, расположенном непосредственно в нижней части колонны. В ре-бойлере подвод тепла осуществляется паром низкого давления. Пары воды выводятся с верха колонны 12 при температуре 105 "С, сконденсировавшаяся при охлаждении в холодильнике 18 вода поступает в емкость 19, откуда необходимое количество воды насосом 20 подается на орошение колонны регенерации для предотвращения уноса капель гликоля с парами воды, а балансовое количество воды отводится в дренаж. Регенерированный гликоль с низа регенератора проходит через теплообменник 15 для подогрева поступающего потока насыщенного гликоля, затем через водяной холодильник 16 и насосом подается на впрыск в теплообменники 2, 4 и пропановый испаритель 6.

Технологическая схема установки очистки масляных фракций фенолом приведена на рис. 5.12. Исходная масляная фракция подается при температуре 115°С в верхнюю часть абсорбционной колонны К-1- В нижнюю часть этой колонны поступает водяной пар, содержащий пары фенола. Пары фенола улавливаются маслом. Вода после конденсации направляется в сборник Е-1. Масло с низа абсорбера подается в среднюю часть экстрактора Э-1. В качестве экстрактора применяются колонны с насадкой или с жалюзийными тарелками. На верх экстрактора подается расплавленный фенол. Из нижней части Э-1 выводится экстрактный раствор. Оптимальные результаты достигаются при наличии градиента температур по высоте колонны. Для поддержания этого градиента часть экстрактного раствора охлаждается и возвращается в нижнюю часть экстрактора. При охлаждении из экстрактного раствора выделяется некоторое количество растворенных углеводородов, которые образуют орошение в нижней части экстрактора. Количество орошения увеличивают путем подачи в нижнюю часть Э-1 фенольной воды. Вода уменьшает растворимость углеводородов в феноле, вызывая выделение из экстрактного раствора еще некоторого количества растворенных углеводородов. Рафинатный раствор с верха Э-1 поступает в отстойную емкость Е-2, откуда подается в колонну К-2. Отстоявшийся в Е-2 фенол возвращается в верхнюю часть Э-1. В К-2 отгоняется основное количество фенола, содержащегося в рафинатном растворе. С низа К-2 рафинатный раствор перетекает в отпарную колонну К-3, где остатки фенола отгоняются с водяным паром. С низа К-3 рафинат после охлаждения отводится с установки. Экстрактный раствор с низа Э-1 поступает в конденсатор смешения Кн-1, куда направляются также пары воды и фенола из отпарных колонн К-3 и К-6. Экстрактный раствор, поглотив в конденсаторе Кн-1 воду и фенол, поступает далее в сушильную колонну К-4, где от него отгоняется вода в виде азеотропной смеси с фенолом. Основная часть паров азеотропа конденсируется и направляется в сборник Е-3, а избыток паров, минуя конденсатор-холодильник, поступает в нижнюю часть К-1. Из К-4 экстрактный раствор направляется в колонну К-5, где отгоняется основная масса сухого фенола. С низа К-5 экстракт с небольшим количеством фенола поступает в отпарную колонну К-6, где остатки фенола отпариваются с водяным паром. Пары сухого фенола из К-2 и К-5 после конденсации поступают в сборник сухого фенола, откуда сухой фенол подается в верхнюю часть Э-1. Фенольная вода из Е-3 поступает на орошение сушильной колонны К-4, отпарных колонн К-3 и К-6, а также в нижнюю часть экстрактора Э-1. Острый пар, направляемый в колонны К-3 и К-6, вырабатывается из конденсата, накапливающегося в сборнике Е-1. Таким образом, вода на установке циркулирует в замкнутом цикле.

Технологическая схема процесса на отдельной установке селективного гидрокрекинга приведена на рис. 5.5. Сырье насосом / подается на смешение с водородсодержащим газом от компрессора 2. В качестве источника водорода может быть использован любой водородсодержащий газ с концентрацией водорода выше 80% , в частности избыточный газ риформинга. Смесь сырья и водородсодержащего газа нагревается в теплообменнике 3, а затем в печи 4 до температуры реакции. Из печи газосырьевая смесь направляется в реактор 5. Газопродуктовая смесь из реактора поступает в теплообменник 3, далее охлаждается в холодильнике 6. В сепараторе 7 осуществляется разделение газопродуктовой смеси на водородсодержащий газ и нестабильный катализат. Выделенный водородсодержащий газ компрессором 2 возвращается в систему и частично отдувается для поддержания заданного парциального давления водорода. Возможно осуществление варианта работы «на проток», при котором весь выделившийся водородсодержащий газ отдувается, а давление в реакторе поддерживается только за счет подачи свежего водородсодержащего газа. Нестабильный катализат после нагрева в теплообменнике 8 поступает в стабилизационную колонну 9 для выделения растворенных углеводородов. Из верхней части колонны 9

Несконденсированный продукт направляется в абсорбер 11, где основное количество растворенных углеводородов С4 и С6 извлекается с помощью смеси углеводородов Св—С12. Растворенные углеводороды С4—С5 отгоняются в десор-бере 12 и в смеси со сжиженным продуктом из конденсатора 10 поступают на систему ректификационных колонн 13 и 14. В колоннах от продукта дегидрирования отгоняются низко- и высококипящие примеси (последние добавляются

своего максимального значения, а затем резко падает и. при температурах 130—140° С становится равным износу при температуре 20° С. Для каждого типа топлива существуют свои температуры максимального износа. Так, для топлива Т-1 эта температура равна 90° С, для Т-7 — 60° С, Т-6 — 90° С, нафтила — 75° С, ТС-1 — 67° С. Такой характер зависимости износа от объемной температуры топлива объясняется двумя процессами: при повышении температуры от 20° до температуры максимального износа происходит увеличение износа за счет окисления поверхностей трения растворенным кислородом. С повы-шением температуры возрастает химическая активность топлива,

На окисление топлива растворенным кислородом может существенно влиять соотношение площади поверхности контакта с газовой фазой и объема топлива. Это влияние обусловливается неравномерным распределением концентраций растворенных газов по высоте топлива в тонких слоях. В поверхностном слое топлива растворяется значительно больше газов, в том числе и кислорода, чем в аналогичных по толщине слоях, расположенных в остальном о!бъеме топлива. В связи с этим количество газов, поглощенных предварительно дегазированным топливом, сильно зависит от высоты его налива i.

Растительные и животные жиры, как и жирные кислоты, сравнительно устойчивы против разрушающего действия бактерий, за исключением аэробных условий и таких условий, при которых даже нефть и углеводородные масла могут разрушаться. В результате жизнедеятельности бактерий из ацетатов образуется метан. Стоун и Зобелл указывают, что все попытки бактериального разложения высших жирных кислот окончились неудачей и не удалось выделить ни одного гомолога метана. Хотя образование нерастворимых кальциевых и магниевых мыл возможно, представляется более вероятным, что нерастворимый характер органического вещества в образцах, изученных Траском, может быть объяснен легкостью, с которой ненасыщенные растительные и животные жиры и жирные кислоты полимеризуются в нерастворимые твердые вещества, в особенности после легкого окисления . Изученный Стадниковым балхашит представляет собой твердое органическое вещество, которое отлагается в осадках в солоноватой озерной воде и состоит преимущественно из полимеризованных ненасыщенных растительных и животных жиров. Известно, что некоторые морские водоросли содержат жирные вещества, а куронгит представляет собой пластичное твердое органическое вещество, образовавшееся в отложениях с разложившимися морскими водорослями в соленоводной лагуне Куронга в Северной Австралии. Это вещество образуется в полуаксинитовых условиях и содержит некоторые жирные вещества, неомыляемые углеводородные масла и «воск». В обоих случаях жирные вещества растительного и животного происхождения образуют твердое заполимеризовавшееся вещество, настолько твердое, чтобы сохраниться в несцементированных осадках. Это уже давно принято геологами в качестве гипотезы образования исходного вещества нефти в первичной стадии отложения.

Кинетика окисления растворенным кислородом в замкнутом объеме 86

Оценка эффективности ингибиторов по кинетике окисления топлива растворенным кислородом......... 147

Многочисленные исследования и практические данные показали, что температура, при которой обеспечивается нормальная работа агрегатов топливных систем газотурбинных двигателей на топливах типа ТС-1 и Т-1, не превышает 100—120 °С, в зависимости от типа летательного аппарата. Ограничение топлив Т-1 и ТС-1 по температуре применения объясняется наличием в них природных соединений, содержащих кислород, серу и азот . При температурах выше 100— 120 °С топлива в топливных системах достаточно интенсивно окисляются растворенным кислородом, содержание которого достигает в них 4—5% . При наличии в топливе природных гетероатомных соединений их окисление сопровождается появлением осадков и смолистых соединений, отлагающихся на фильтрах и в агрегатах топливорегулирующей и тошшвоподаю-щей аппаратуры, в топливомасляных радиаторах, топливопро-

Трансформация кинетических методов применительно к условиям практики позволила разработать оригинальные методики прогнозирования допустимых сроков хранения топлив, контроля содержания антиоксидантов в топливах, сравнения топлив по их склонности к окислению и др. Поскольку топлива окисляются в топливных системах двигателей растворенным кислородом в замкнутом объеме, важное место в методологии исследования топлив заняли новые кинетические методы оценки окисляемости топлив и эффективности антиоксидантов при недостатке кислорода.

Окисляемость топлив можно оценивать по кинетическим параметрам окисления растворенным кислородом в замкнутом объеме. Именно такой режим окисления наблюдается в топливных системах двигателей. Топливо протекает по топливной системе без контакта с атмосферой и окисляется тем кислородом, который в нем растворен. В отличие от окисления при избытке кислорода в замкнутом объеме концентрация растворенного кислорода по мере окисления уменьшается.

Сущность метода определения окисляемости топлив в замкнутом объеме заключается в окислении топлива растворенным кислородом в специальных ампулах. Измеряют кинетику поглощения кислорода и образования гидропероксида. Кинетическая кривая Д — t имеет, как правило, 5-образный характер, кинетическая кривая накопления гидропероксида проходит через максимум. Скорость окисления топлива характеризуют периодом поглощения кислорода наполовину от исходной концентрации ti/a или средней скоростью поглощения кислорода ~v~=o/t, максимальной концентрацией гидропероксида макс или временем до ее достижения

Измерение кинетики образования других промежуточных соединений — спиртов, карбонильных соединений, кислот — позволяет характеризовать динамику их поведения в ходе окисления топлива растворенным кислородом. Метод позволяет сравнивать топлива по окисляемости и выявить специфику окисления топлив растворенным кислородом.

Установка для проведения окисления в замкнутом объеме растворенным кислородом состоит из набора окислительных ячеек, помещаемых в термостат. Окислительная ячейка представляет собой цилиндр из термостойкого стекла объемом 10—20 см3 с пришлифованной пробкой, переходящей

 

Рационального использования. Рассмотренные закономерности. Рассмотрим изменение. Рассмотрим подробнее. Рассмотрим результаты.

 

Главная -> Словарь



Яндекс.Метрика