Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Гидрокрекинга каталитического


стороны, прокотированный галоидами кислый носитель - оксид алюминия катализирует реакции гидрокрекинга, изомеризации и др. Поэтому одним из условий нормальной работы катализатора в сырьевом цикле является тщательная сбалансированность его кислотной и металлической функций.

Первым катализатором риформинга был алюмомолибденовый катализатор , который катализировал реакции ароматизации, изомеризации и гидрокрекинга углеводородов. Однако он отличался низкой селективностью и высокой скоростью закоксовывания. Тем не менее, это не явилось препятствием для промышленного использования алюмомолибденового катализатора во время второй мировой войны в производстве толуола и компонентов авиационных бензинов. В конце 40-х годов стали применять более эффективные платиновые катализаторы, а в последующие годы широкие исследования привели к созданию разных их модификаций.

В настоящее время катализаторы на основе окислов и сульфидов вольфрама, молибдена и никеля применяются не только в процессах гидрогенизации, но и в процессах гидроочистки, гидрокрекинга, изомеризации фракций С5 — Св, поэтому их значение еще больше возрастает.

Влияние продолжительности опыта проиллюстрировано ранее рис. 4.3, а. Аналогичные зависимости выхода кокса, газа, промежуточных продуктов и глубины превращения от продолжительности опыта в присутствии водорода получены нами для каталитического риформинга, гидроочистки, гидрокрекинга, изомеризации и других процессов.

Влияние азотистых соединений. Органические соединения, содержащие азот, в условиях каталитического риформинга подвергаются деструкции, образуя аммиак и углеводороды. Наличие в сырье азотсодержащих соединений приводит к снижению скоростей реакций гидрокрекинга, изомеризации, дегидроциклизации и в несколько меньшей степени дегидрогенизации . В промышленной практике азотистые соединения обычно удаляются в процессе гидрогенизационного обессеривания сырья.

Органические соединения, содержащие азот, в условиях каталитического риформинга подвергаются деструкции, образуя аммиак и углеводороды. В присутствии азотсодержащих соединений снижаются скорости реакций гидрокрекинга, изомеризации, дегидро-циклизации и в несколько меньшей степени дегидрогенизации .

Каковы же задачи катализаторов крекинга, если формулировать их, исходя из современных представлений о механизме протекающих реакций? В самом общем виде картина следующая. Катализатор отбирает из сырья и сорбирует на себе прежде всего те молекулы, которые способны достаточно легко дегидрироваться, то есть отдавать водород. Образующиеся при этом непредельные углеводороды, обладая повышенной адсорбционной способностью, вступают в связь с активными центрами катализатора. По мере роста непредельности происходит полимеризация углеводородов, появляются смолы — предшественницы кокса, а затем и сам кокс. Высвобождающийся водород принимает активное участие в других реакциях, в частности гидрокрекинга, изомеризации и др., в результате чего продукт крекинга обогащается углеводородами не просто легкими, но и высококачественными — изоалканами, аренами, алкиларе-нами с температурами кипения 80—195° С. Это и есть широкая бензиновая фракция, ради которой ведут каталитический крекинг тяжелого сырья. Конечно, образуются и более высококипящие углеводороды фракции дизельного топлива, относящиеся к светлым нефтепродуктам.

Значительно более прогрессивны и экономичны процессы каталитического облагораживания масляного сырья и синтеза новых углеводородов в результате глубоких термокаталитических превращений в присутствии водорода. В этих процессах нежелательные компоненты сырья преобразуются в углеводороды нужной структуры, что позволяет использовать для производства масел сырье различных состава и происхождения. В настоящее время гидроизомеризацией гачей и очищенных парафинов удается получать базовые масла с индексом вязкости до 150. Каталитическое гидрирование как один из процессов очистки в производстве масел стал развиваться сравнительно недавно. В СССР впервые гидроочистка депарафинированного масла фенольной очистки была осуществлена в 1960 г. на Новокуйбышевском НПК- Гидродоочистку используют вместо доочистки глинами или селективной очистки. Условия и результаты процесса гидродоочистки определяются в основном составом сырья, качеством катализатора и требованиями к готовой продукции.

Большой вклад в развитие научных основ приготовления цеолитных катализаторов и выяснение механизма кислотно-основного катализа на цеолитах внесли исследования советских ученых . В этих исследованиях были выявлены основные закономерности, связанные с формированием активных катализаторов на основе цеолитов типа фожазита, мордени-та, ЦВМ, ЦБК и др., а также механизм их действия в реакциях алкилирова-ния бензола и изопарафинов олефинами, скелетной изомеризации насыщенных углеводородов, гидратации олефинов и т.д. Успехи, связанные с изучением кислотно-основного катализа на цеолитах как у нас в стране, так и за рубежом, привели к промышленному освоению цеолитных катализаторов нефтепереработки, а именно в процессах крекинга, гидрокрекинга, изомеризации углеводородов и др.

Кроме традиционных технологий каталитического крекинга, каталитического гидрокрекинга, изомеризации, в США разработана принципиально новая технология, совмещающая функции ряда известных процессов. В частности, на заводе фирмы Coastal Refining and Marketing в г. Корпус-Кристи, шт. Техас запущена демонстрационная установка, на которой отрабатывается новый процесс «Darsy» , позволяющий совместить работу установок каталитического крекинга, изомеризации, обессеривания и циклизации . На установке перерабатывается венесуэльская нефть с содержанием серы 0,5—1,2%. После переработки на установке «Darsy» получают продукт с содержанием серы менее 0,02% и октановым числом 70. В этом продукте содержание парафинов и изопарафинов, а также нафтенов выше, а ароматических соединений ниже, чем в традиционных продуктах нефтепереработки. Продукт может использоваться для получения моторных топлив с характеристиками, соответствующими повышенным экологическим требованиям. Особенностью процесса является то, что он может быть осуществлен с использованием существующего оборудования.

гидрокрекинга, изомеризации, очистки отработанной воды.

Жирный газ, состоящий преимущественно из предельных углеводородов, поступает с установок первичной переработки нефти AT и АВТ, гидрокрекинга, каталитического риформинга и некоторых других. Жирный газ, состоящий из непредельных углеводородов, поступает с установок каталитического и термического крекинга, пиролиза и коксова- , ния. Состав сырья определяет режим процесса, причем это влияние состава сырья одинаково при фракционировании предельных и непредельных углеводородов. Наибольшее влияние на работу фракционирующего абсорбера оказывает изменение концентрации углеводородов Q —С3 в жирном газе. Например, с повышением содержания углеводородов С3 в сырье необходимо увеличить расход абсорбента на 10—15 % . Кроме того, следует повысить расход водяного пара в подогревателе колонны для отпаривания большего количества пропана и усиления режима охлаждения при конденсации паров с верха этой колонны, а также перевода питания кблонны на лежащие выше тарелки.

Особое внимание в качестве перспективной альтернативы нефти в последние годы привлекают продукты ожижения угля или синтетическая угольная нефть , поскольку запасы угля особенно велики и имеются во многих странах мира. Многочисленные исследования, проведенные главным образом в США и ФРГ, а также в Австралии, Великобритании, Канаде и некоторых других странах как в лабораторном, так и в пилотном масштабе, выявили принципиальную и техническую возможность превращения СУН в высококачественные топлива с применением традиционных процессов нефтепереработки — гидроочистки, гидрокрекинга, каталитического крекинга и каталитического риформинга.

гидрокрекинга/каталитического рифор- 250/65 265/95

Пример завода с глубокой переработкой нефти по топливному варианту приведен на рис. 1.5. Помимо установок первичной перегонки и облагораживания светлых дистиллятов в состав завода включены установки гидрокрекинга, каталитического крекинга и коксования. На базе легких непредельных углеводородных фракций, полученных каталитическим крекингом и коксованием, может быть организовано производство высокооктановых компонентов автомобильного бензина — алкилата или метил-mpem-бутилового эфира .

гидроочистки гидрокрекинга каталитического крекинга типичные нефтезаводе кис

нов каталитического риформинга. Кроме того, при таких сочетаниях гидрокрекинга с каталитическим крекингом можно получать малосернистые высокоароматизированные каталитические газойли, пригодные для использования в качестве сырья в производстве сажи.

В топливно-нефтехимических схемах помимо процессов каталитического риформинга, гидрокрекинга, каталитического крекинга и алкилирования изобутана должна еще предусматриваться гидроизомеризация легких бензинов. Продукты гидроизомеризаци-и необходимы для частичной затйены алкилатов. В этом случае непредельные углеводороды и изобутан могут быть использованы в процессах синтеза каучука и других высокомолекулярных соединениях. В схемах перспективных НПЗ, по-видимому, будет неуклонно повышаться попутная выработка олефинового и изопарафинового сырья, необходимого для синтезов различных продуктов широкого народного потребления. Вместе с тем в дальнейшем, очевидно, будет возрастать относительный выпуск реактивных топлив и арктических изомеризованных моторных топлив, в производстве которых роль процессов гидрокрекинга и гидроизомеризации неуклонно увеличивается, Повышение удельного значения установок гидрокрекинга позволит одновременно вырабатывать изомеризованные низкозастывающие топлива и базовые масла.

В последние годы появились отдельные нефтехимические предприятия, потребляющие в качестве сырья нефть. Непосредственный пиролиз нефти недостаточно освоен. Для повышения выхода ценных продуктов из нефти такие предприятия включают процесс гидрокрекинга . В этих схемах не только расходуется водород, получаемый в процессе пиролиза и каталитического риформинга бензина, но и предусматривается специальное производство водорода. Например, схема производства олефинов, ароматических углеводородов и кокса из нефти показана на рис. 10 . По одной из схем с использованием гидрокрекинга, каталитического крекинга, пиролиза и других процессов предусматривается получение из нефти более 70% различных индивидуальных углеводородов.

Н, наконец, химия нефти изучает химизм и механизм термических и термокаталптпческих превращений углеводородов нефти и нефтепродуктов: крекинга термического, каталитического крекинга, гидрокрекинга, каталитического риформинга, изомеризации, ал'килировання, ступенчатой полимеризации олефинов.

В нефтегазопереработке аппараты с неподвижным или движущимся плотным слоем зернистого материала используют в процессах адсорбционного разделения газов, каталитического крекинга, риформинга, гидроочистки; кипящий слой применяют в реакционных аппаратах установок каталитического крекинга, коксования, гидрокрекинга, каталитического дегидрирования н-бутана и др.

В качестве сырья процессов алкилирования используются изо-бутан и непредельные углеводороды С3 и С4. Эти углеводороды получают на нефтеперерабатывающих заводах главным образом в процессах гидрокрекинга, каталитического и термического крекинга. Отсутствие достаточных ресурсов непредельных углеводородов С3 и С4 не позволяет производить алкилат в необходимых количествах. Кроме того, процесс изомеризации легких бензиновых фракций может обладать лучшими экономическими показателями, чем процесс алкилирования . Однако развитие процесса изомеризации лимитируется ресурсами легких бензиновых фракций. Поэтому с помощью изомеризующего гидрокрекинга прямогонных бензиновых фракций можно восполнить количество высокооктановых изопарафиновых углеводородов, недостающее для приготовления автомобильных топлив типа АИ-93 и АИ-98 на основе бензинов каталитического риформинга.

 

Гомогенных химических. Гомогенных сокатализаторов. Гомогенного каталитического. Гомологов циклогексана. Горизонты представлены.

 

Главная -> Словарь



Яндекс.Метрика