Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Компонентов температуры


Граничный и пластический слои обладают сопротивлением сдвиговому усилию и не являются текучими, они сохраняют приданную им форму. Толщина этих слоев не является постоянной даже для одного и того же углерода, на поверхности которого из связующего формируется межфазный продукт. При избытке связующего прочность системы снижается. По мере увеличения растворяющей силы компонентов связующего толщина адсорбционного слоя уменьшается, что приводит при изготовлении УНС к меньшему расходу свзующего.

Спекание электродных заготовок, самообжигающихся анодов, заготовок для производства обожженных анодов во многом аналогично процессу замедленного коксования тяжелых нефтяных остатков в необогреваемых камерах. Спекание, так же как и коксование, происходит по радикальному механизму, но с иными кинетическими закономерностями. В результате сложных физико-химических изменений компонентов связующего, происходящих при высокотемпературном нагреве, между зернами наполнителя образуются химические связи, приводящие к упрочнению структуры заготовок. При интенсивном обжиге летучие, выделяющиеся в виде паров и газов, искажают структурный скелет заготовок и ослабляют их механическую прочность. Постепенный нагрев заготовок в особо ответственных моментах способствует выделению летучих в виде низкомолекулярных газов и большему выходу кокса, образующегося при спекании связующего, что в конечном счете приводит к меньшему искажению структурного скелета заготовок.

•Спекание электродных заготовок, самообжигающихся анодов, заготовок для производства обожженных анодов во многом аналогично процессу замедленного коксования тяжелых нефтяных остатков в необогреваемых камерах. Процесс спекания, как и коксование, происходит по радикальному механизму, но с иными кинетическими закономерностями. В результате сложных физико-химических изменений составляющих компонентов связующего, происходящих при высокотемпературном нагреве, между зернами наполнителя образуются химические связи, приводящие к упрочнению структуры заготовок. Переход системы из жидкого состояния в твердое сопровождается изменением внутренней энергии пеко-коксовой композиции. Повышение температуры шихты и пека способствует процессу уплотнения, идущему самопроизвольно с уменьшением свободной энергии.

Пеки, используемые в качестве связующего должны удовлетворять двум основным требованиям— обладать хорошими пластическими свойствами и образовывать прочную коксовую структуру анода. В процессе смешения кокса-наполнителя со связующим происходит селективная сорбция компонентов связующего на поверхность коксовых частиц. Характер взаимодействия и прочность получаемого композиционного материала во многом зависят от сорбционных свойств связующего компонента .

В производстве электродов прокаленный кокс, служащий наполнителем, смешивается со связующим. При этом происходит селективная сорбция компонентов связующего на поверхности коксовых частиц. Характер взаимодействия определяется свойствами связующего и свойствами поверхности коксовых частиц.

Испытания печатных красок проводятся для определения степени соответствия ее показателей нормам, регламентируемым стандартами и техническими условиями, либо для выбора оптимальных режимов печатания, обеспечивающих требуемое качество печатного оттиска и, наконец, с целью предусмотрения необходимых средств для подготовки краски к использованию. Нами определялись некоторые технологические характеристики растворов высокомолекулярных соединений нефти в минеральных маслах с целью оценки их пригодности для использования в качестве печатных красок. Смеси приготавливали с использованием масла МП-12, в которое добавляли 10% мае. ВМС. Растворение ВМС проводили при температурах от 90 до 140°С в течение 30 минут при перемешивании. В процессе закрепления краски на оттиске часть растворителей и низкомолекулярных компонентов связующего впитывается в поры бумаги. При этом возможны также проникновение в поры бумаги краски, а также коагуляция пигментов на поверхности бумаги. Последние два обстоятельства оказывают существенное влияние на качество оттиска. Определяющими показателями качества красок в этих случаях являются их дисперсность, реологические характеристики, агрегативная устойчивость против расслоения. С увеличением дисперсности системы, то есть с уменьшением размеров агрегатов частиц пигментов, увеличивается степень их проникновения в поры бумаги. От концентрации частиц и

Для выяснения характера сорбции были выполнены эксперименты на образцах с различным содержанием связующего — от 20 до 30 % и наполнителем с 5уд = 3,36 м2/г. Изменение количества лека мало влияет на ход выделения метана при 700 °С . По-видимому, сорбция высокомолекулярных компонентов связующего зависит в первую очередь от дисперсности наполнителя, т.е. наполнитель с данной поверхностью может сорбировать определенное количество тяжелых фракций, причем степень связывания высокомолекулярных соединений можно определить по характеру выделения продуктов пиролиза. Следует отметить, что несмотря на значительное число работ по изучению свойств каменноугольного пека, в настоящее время нет единой системы взглядов на роль химического состава, взаимодействия его с поверхностью наполнителя и других факторов в формировании углеродного материала.

Граничный и пластический слои обладают сопротивлением сдвиговому-усилию и не являются текучими, они сохраняют приданную им форму. Толщина этих слоев не является постоянной даже для одного и того же углерода, на поверхности которого из ч связующего формируется межфазный продукт. При избытке связующего прочность системы снижается. По мере увеличения растворяющей силы компонентов связующего толщина адсорбционного слоя уменьшается, что приводит при изготовлении УНС к меньшему расходу свзующего.

Спекание электродных заготовок, самообжигающихся анодов, заготовок для производства обожженных анодов во многом аналогично процессу замедленного коксования тяжелых нефтяных остатков в необогреваемых камерах. Спекание, так же как и коксование, происходит по радикальному механизму, но с иными кинетическими закономерностями. В результате сложных физико-химических изменений компонентов связующего, происходящих при высокотемпературном нагреве, между зернами наполнителя образуются химические связи, приводящие к упрочнению структуры заготовок. При интенсивном обжиге летучие, выделяющиеся в виде паров и газов, искажают структурный скелет заготовок и ослабляют их механическую прочность. Постепенный нагрев заготовок в особо ответственных моментах способствует выделению летучих в виде низкомолекулярных газов и большему выходу кокса, образующегося при спекании связующего, что в конечном счете приводит к меньшему искажению структурного скелета заготовок.

Спекание электродных заготовок, самообжигающихся анодов, заготовок для производства обожженных анодов во многом аналогично процессу замедленного коксования тяжелых нефтяных остатков в необогреваемых камерах. Процесс спекания, как и коксование, происходит по радикальному механизму, но с иными кинети* ческими закономерностями. В результате сложных физико-химических изменений составляющих компонентов связующего, происходящих при высокотемпературном нагреве, между зернами наполнителя образуются химические связи, приводящие к упрочнению -структуры заготовок. Переход системы из жидкого состояния в твердое сопровождается изменением внутренней энергии пеко-коксовой композиции. Повышение температуры шихты и пека способствует процессу уплотнения, идущему самопроизвольно с уменьшением свободной энергии.

Граничный и пластический слои обладают сопротивлением сдвиговому-усилию и не являются текучими, они сохраняют приданную им форму. Толщина этих слоев не является постоянной даже для одного и того же углерода, на поверхности которого из ч связующего формируется межфазный продукт. При избытке связующего прочность системы снижается. По мере увеличения растворяющей силы компонентов связующего толщина адсорбционного слоя уменьшается, что приводит при изготовлении УНС к меньшему расходу свзующего.

Спекание электродных заготовок, самообжигающихся анодов, заготовок для производства обожженных анодов во многом аналогично процессу замедленного коксования тяжелых нефтяных остатков в необогреваемых камерах. Спекание, так же как и коксование, происходит по радикальному механизму, но с иными кинетическими закономерностями. В результате сложных физико-химических изменений компонентов связующего, происходящих при высокотемпературном нагреве, между зернами наполнителя образуются химические связи, приводящие к упрочнению структуры заготовок. При интенсивном обжиге летучие, выделяющиеся в виде паров и газов, искажают структурный скелет заготовок и ослабляют их механическую прочность. Постепенный нагрев заготовок в особо ответственных моментах способствует выделению летучих в виде низкомолекулярных газов и большему выходу кокса, образующегося при спекании связующего, что в конечном счете приводит к меньшему искажению структурного скелета заготовок.

35% пропана. С понижением температуры здесь увеличивается выход деасфальтизата за счет улучшения растворимости его в пропане. В верхней части колонны формируется раствор деасфальтизата, содержащий примерно 85% пропана. С повышением температуры в этой части колонны улучшается качество деасфальтизата за счет уменьшения растворимости в пропане в первую очередь высокомолекулярных смолообразных компонентов. Температуры верха и низа колонны нельзя регулировать независимо друг от друга: бесконтрольное и одновременное понижение температуры низа и повышение температуры верха приводит к чрезмерно большой циркуляции внутренних потоков и нестабильной работе колонны.

На эффективность деасфальтизации влияет соотношение между количествами пропана и гудрона. При добавлении небольших порций пропана к гудрону происходит их полное смешивание. Дальнейшее добавление пропана приводит к образованию двухфазной системы: раствора углеводородов в пропане и раствора пропана в смолисто-асфальтеновых веществах* С увеличением доли пропана в системе разбавляется пропано-вый раствор, в результате концентрация растворенных в нем компонентов уменьшается, силы взаимного притяжения угле* водородов ослабевают и из раствора выделяются наиболее высокомолекулярные углеводороды. Действие этого фактора проявляется до тех пор, пока оно не перекрывается другим —• обычным увеличением количества растворенного вещества при увеличении количества растворителя. Таким образом, существует оптимальное соотношение между пропаном и гудроном^ при котором получается и оптимальное качество деасфальтизата. Выход асфальта при этом наибольший, а температура размягчения наименьшая. С повышением температуры деасфальтизации упомянутый оптимум наблюдается при меньших содержаниях пропана.

Адсорбционный метод применяется для выделения газового бензина из тощих газов, содержащих тяжелых углеводородов до 50 г/м3. Сущность метода заключается в способности пористых твердых тел, таких, как активированный уголь, силикагель, молекулярные сита, адсорбировать на своей поверхности различные углеводороды. Количество адсорбированных углеводородов зависит от природы адсорбента и адсорбируемого вещества, состава газа, т. е. адсорбируемости других компонентов, температуры и давления процесса. Так, например, силикагель в первую очередь адсорбирует

Эти две фазы находятся в равновесии, которое зависит от соотношения компонентов, температуры и давления. В углеводородной фазе соотношение изомеров диметилбензолов при достаточном времени реакции приближается к термодинамически равновесной концентрации. В кислотной фазе равновесие сдвинуто в сторону-образования комплекса .м-ксилола с HF -f-BF3 и концентрация л-кси-лола превышает термодинамически возможную величину. Процесс изомеризации необходимо вести при таких условиях, которые обеспечивали бы сохранение жидкой фазы в реакционной зоне.

= -j— в уравнении прямой у —Кх-\-Ъ является постоянным для каждой пары растворителей независимо от соотношения компонентов, температуры и кратности растворителя по отношению к маслу. Член Ь в уравнении зависит от состава масла и от растворителя.

При заданных значениях концентраций a't всех компонентов, температуры t и давления р системы уравнение может быть использовано для определения величины степени отгона е'. Расчет проводят методом попыток, предварительно задаваясь предполагаемым значением е'. При правильном выборе значения е' должно выполняться уравнение , в противном случае принимается новое значение е' и делается пересчет.

При заданных значениях концентраций ctv всех компонентов, температуры / и давления р системы уравнение может быть использовано для определения величины степени отгона е ' . Расчет проводят методом попыток, предварительно задаваясь предполагаемым значением е'. При правильном выборе значения е' должно выполняться уравнение , в противном слу* чае принимается новое значение е' и делается пересчет.

35% пропана. С понижением температуры здесь увеличивается выход деасфальтизата за счет улучшения растворимости его в пропане. В верхней части колонны формируется раствор деасфальтизата, содержащий примерно 85% пропана. С повышением температуры в этой части колонны улучшается качество деасфальтизата за .счет уменьшения растворимости в пропане в первую очередь высокомолекулярных смолообразных компонентов. Температуры верха и низа колонны нельзя регулировать независимо друг от друга: бес-• контрольное и одновременное понижение температуры низа и повышение температуры верха приводит к чрезмерно большой циркуляции -внутренних потоков и нестабильной работе колонны. .

На эффективность деасфальтизации влияет соотношение между количествами пропана и гудрона. При добавлении небольших порций пропана к гудрону происходит их полное смешивание. Дальнейшее Добавление пропана приводит к образованию двухфазной системы: раствора углеводородов в пропане и раствора пропана в смолисто-асфальтеновых веществах, С увеличением доли пропана в системе разбавляется пропано-вый раствор, в результате концентрация растворенных в нем компонентов уменьшается, силы взаимного притяжения угле* водородов ослабевают и из раствора выделяются наиболее высокомолекулярные углеводороды. Действие этого фактора проявляется до тех пор, пока оно не перекрывается другим — обычным увеличением количества растворенного вещества при увеличении количества растворителя. Таким образом, суще,-•ствует оптимальное соотношение между пропаном и гудроном, при котором получается и оптимальное качество деасфальтизата. Выход асфальта при этом наибольший, а температура "размягчения наименьшая. С повышением температуры деасфальтизации упомянутый оптимум наблюдается при меньших содержаниях пропана.

. Присоединение водорода к алкенам изучалось масс-спектрографическим методом на системах дейтерий — этилен, дейтерий — пропилен, дейтерий — 1-бутен, дейтерий — 2-бутен и дейтерий — изобутилен. Изучали зависимость распределения изотопных молекул от продолжительности процесса, соотношения реагирующих компонентов, температуры и давления с применением различных катализаторов и носителей. Полученные результаты исключают возможность непосредственно молекулярного присоединения газообразного алкена к адсорбированной молекуле водорода или газообразного водорода к адсорбированной молекуле алкена. Механизм реакции, очевидно, включает стадии с участием многочисленных молекулярных форм на поверхности катализатора, ведущие в конечном счете к образованию алкена. Важным промежуточным продуктом этой реакции, очевидно, является алкильный радикал.

Присоединение водорода к алкенам изучалось масс-спектрографическим методом на системах дейтерий — этилен, дейтерий — пропилен, дейтерий — 1-бутен, дейтерий — 2-бутен и дейтерий — изобутилен. Изучали зависимость распределения изотопных молекул от продолжительности процесса, соотношения реагирующих компонентов, температуры и давления с применением различных катализаторов и носителей. Полученные результаты исключают возможность непосредственно молекулярного присоединения газообразного алкена к адсорбированной молекуле водорода или газообразного водорода к адсорбированной молекуле алкена. Механизм реакции, очевидно, включает стадии с участием многочисленных молекулярных форм на поверхности катализатора, ведущие в конечном счете к образованию алкена. Важным промежуточным продуктом этой реакции, очевидно, является алкильный радикал.

При смешении компонентов гидроксида алюминия, нитрата кобальта или никеля и парамолибдата аммония происходит их взаимодействие с образованием кобальт молибдатов, алюмокобальт молибдатов, алюмомолибдатов, алюминатов кобальта . Количество образующихся продуктов зависит как от условий смешения, т. е. от порядка ввода компонентов, температуры, рН среды, так и от присутствия модифицирующих добавок и их концентрации. В гл. 2 было показано, что введение в суспензию гидроксида алюминия 5—10% Si02, алюмосиликата или цеолита способствует образованию

 

Коксования используют. Коксования мощностью. Коксования осуществляют. Коксования полученных. Коксования применяют.

 

Главная -> Словарь



Яндекс.Метрика