Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 [ 4 ] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

рывистости убывает; абсолютные значения пульсации могут ра<-сти или убывать.!

Неупорядоченный хаотический характер пульсаций скорости ветра в приземном слое позволяет считать, что распределение пульсаций скоростного напора следует нормальному закону распределения Гаусса. Тогда добавка к скоростному напору, учитывающая порывистость, может быть определена из записей мгновенной скорости ветра в характерных районах, если средние величины скорости ветра во время наблюдений были достаточно большие [6].

Приняв за меру возможного наибольшего отклонения от среднего скоростного напора обычно принимаемые 2-3 стандарта, получают коэффициент пульсации

т = (23)а, (1.4)

где о - стандарт кривой распределения пульсаций скоростного напора ветра. Полагая законы распределения пульсации ветра и его средней скорости по высоте одинаковыми, например со степенным показателем в первом приближении, равным 0,08-0,12, находят коэффициент т для различных высот. Статистическая обработка наблюдений показала, что изменчивость скоростного напора составляет 0,12-0,16 среднего значения. Это позволило для высоты 20 м принять коэффициент т = 0,25-=-0,35; для высот более 20 м над поверхностью земли его определяют по формуле

m,=m,o(20/2)/\ (1.5)

где г-высота рассматриваемой точки; п 84-12.

Более подробные сведения об учете динамики ветра можно найти в работах h\. Ф. Барштейна [6].

Принятое в Советском Союзе рассмотрение режима скорости ветра в виде случайного процесса находит все большее распространение в разных странах.

2. ВЕТРОВАЯ НАГРУЗКА

Общие сведения о ветровой нагрузке

1 Ветровая нагрузка на сооружения стала привлекать внимание строителей еще в прошлом столетии в связи с появлением стальных конструкций мостов больших пролетов, а применение мачт и башен высотой до 600 м заставило обратить внимание на профиль ветра по высоте. За последнее время интерес к ветровой нагрузке появился у авторов проектов высотных здании, строителей заводов с оборудованием, расположенным на открытом воздухе. Ветровая нагрузка стала доминирующей для линий электропередачи напряжением 220 кв и более.



Появление сооружений, деформативность которых во многом определяет нормальное протекание технологического процесса, заставило по-иному взглянуть на ветровую нагрузку, не ограничивая ее ролью участника только в прочностных расчетах. Все более широкое внедрение теории вероятностей и математической статистики в практику проектирования строительных конструкций потребовало сведений о вероятности ветров различной силы. Более того, расчет строительных конструкций на ветровую нагрузку стал неотделим от технологических вопросов, когда рассматривается общая надежность системы или выясняется ее оптимальное решение.

Совершенствование методики расчета coopynveHnft, внедрение высокопрочных материалов привело к повышению гибкости конструкций и облегчению их веса, заставило отказаться от взгляда на ветровую нагрузку только как на статическую. Вопросы порывистости ветра важны при проектировании гибких сооружений, динамическое действие ветра на которые вызывает иную реакцию, чем на жесткие или массивные конструкции. Для сооружений, характерных большими периодами свободных колебаний, особенно у таких, ветровая нагрузка иа которые определяет их прочность, нельзя ограничиваться учетом порывистого характера ветра только введением динамического коэффициента в статический расчет.

Ранее порывы ветра рассматривали в виде упругого удара на сооружение и учитывали это динамическим коэффициентом в расчете. При таком подходе оставался открытым вопрос о влиянии повторных порывов ветра, что привело к введению еще коэффициента повторяемости. / Ветровая нагрузка на сооружение зависит от скорости и порывистости ветра, параметров конструкции, включая ее динамические характеристики, аэродинамических коэффициентов формы, размеров и положения конструкции относительно потока. Аэродинамические коэффициенты определяют опытным ПYтeм.

Ветровая нагрузка на сооружение может быть определена по формуле

Q = rSc,PS, (2.1)

где п- коэффициент перегрузки, вводимый при расчете сооружений по предельным состояниям; -аэродинамический коэффициент-коэффициент лобового сопротивления;

q - нормативный скоростной напор ветра на уровне середины рассматриваемого участка сооружения;

Р-коэффициент, называемый динамическим, учитывающий реакцию сооружения на действие порывов ветра;

S - проекция площади сооружения на плоскость, нормальную к направлению ветра.



Здесь скоростной напор ветра

<7 = i-pF2 кГ/ж2, (2.2)

где Р-плотность воздуха, зависящая от давления, температуры и влажности; V - скорость ветра в м/сек.

На больших высотах, в условиях Крайнего Севера температура воздуха молет быть ниже нормальной, принимаемой в стандартной атмосфере равной 15° С, что вызывает повышение расчетного скоростного напора ветра и что иногда учитывают в расчетах.

[При неизменной температуре воздуха давление атмосферы с высотой понилается. Это приводит к снижению скоростного напора ветра вследствие уменьшения плотности воздуха 4!Чаще всего температура воздуха с высотой снижается, что, учитывая понижение атмосферного давления с высотой, позволяет оперировать с постоянным значением плотности воздуха, равным 0,125 кг-сек/м. Тогда скоростной напор ветра

д = У116кГ/м\ (2.3)

Формула (2.1) показывает, что ветровую нагрузку на сооружение сначала необходи.мо определить приближенно, затем назначить размеры конструкции, после чего выяснить ее динамические параметры и, наконец, откорректировать величину динамического коэффициента, зависящего от периода свободных колебаний и логарифмического декремента затухания.

Сама природа ветра, когда на среднюю скорость накладываются порывы ветра (см. рис. 1.5), подсказывает представления ветровой нагрузр! в виде двух компонент, одна из которых статическая, а другая - динамическая:

9p = «((7o-f 9д), (2.4)

где п-коэффициент перегрузки, учитывающий возможное повышение нормативного скоростного напора до. Он определяется из вероятности появления скорости ветра за больший промежуток времени, чем принятый при определении нормативной величины скоростного напора.

Если в формулу (2.4) ввести т - коэффициент пульсации скоростного напора, т. е. динамической добавки, определяемой статистическим путем (см. выше), - коэффициент динамичности, учитывающий реакцию сооружения на пульсацию ветра, тогда расчетный скоростной напор ветра

qpnqoil+m (2.5)

или = пда, (2.6)




0 1 2 3 [ 4 ] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35



Яндекс.Метрика