Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


о о я л

о а. в

й> ч

5 &§

о (О

о. н

СГ «в

о а.

S "

t< &

л «

ос S

о се

о а ч о в

Решение

1.Средняя скорость бензина в трубопроводе по формуле (5.8) 4-354

и = -

3600-3,14-0,355 2.ЧИСЛО Фруда по формуле (5.74а)

0,993

= 0,993 м/с.

Fr = -

= 0,283.

9,81-0,355

3.Рассчитываем число Этвеша Еб, безразмерную обратную вязкость Nf и функцию угла наклона нисходящего участка, на котором расположено первое по счету скопление, по формулам (5.76) - (5.78):

9,81-0,355

Ео =

0,022

Nf =U9,81-0,355-(750-l,295)/750

(750-1,295) = 42074;

0,61-10"=1085105;

f (а) = (/cos3,2° + yjsm3x] exp(l,144 - sin3,2°) = 1,172.

4.ЧИСЛО Фруда, при котором газовое скопление находится в неустойчивом равновесии в нисходящем участке трубопровода, по формуле (5.75)

РГр = 0,082• 42074"" -1085105"° -1,172 = 0,715 .

Так как неравенство (5.74) не выполняется, то, следовательно, из рассматриваемой вершины газовое скопление выносится не целиком, а за счет постепенного размыва - отрыва от их кормовой части газовых пузырьков с последующим уносом вместе с жидкостью.

5.Для остальных вершин профиля расчет выполняется аналогично. Его результаты приведены в табл. 5.7.

Таблица 5.7

Исходные данные и результаты расчетов по проверке возможности выноса паровоздушных скоплений в виде единой пробки

№ вершины с газовым скоплением

Угол наклона участка а, град

0,79

1,06

0,88

3,40

0,715

0,695

0,698

0,696

0,717

Как видно, из всех вершин профиля скопления выносятся их постепенным размывом потоком бензина.



б.Характерные числа Фруда по формулам (5.81)

Fr, =2615-42074--" •(sin3,2) =0,00627 ;

Fr2=3,106-42074-=0,217;

l,05Fr, =1,05 0,217 = 0,0228.

7.Так как Fr, >1,05ЕГ, то среднее газовое число для вершин по формулам (5.80)

р, = 0,217 (0,283 - 0,217)"" • (sin 3,2" f = 0,03 86.

Аналогично находим р, =0,0237; рз = 0,0262; р, =0,0246; р5 = 0,0394.

8.Площадь сечения нефтепродуктопровода и объемы участков между соседними вершинами:

F = iii:u2 = 0,0989„-

V„.2 = о, 0989 (3500 +1500) = 494,5 м;

V,,.3 =0,0989 (1200+ 1400) = 257,1 V,3 , = 0,0989 • (1300 +1600) = 286,8 м; V,4.5 = 0,0989 • (2000 + 2100) = 405,5 м;

V.5 , =0,0989 1400 = 138,5 м.

9.Продолжительность полной очистки от газовой фазы участка между вершинами № 1 и № 2 по формуле (5.85)

10,2

+ 494,5

= 2,14 ч.

0,0386

10.Объемы скоплений, которые останутся в вершинах профиля к моменту окончания очистки объема V,,, по формулам (5.86)

vik2=l7 + (0,0386-0,0237)-354-2,14 = 13,0 м;

= 9.3 + (0,0237 - 0,0262) • 354 2,14 = 7,41 м; У£ = 12,6 + (0,0262 - 0,0246) • 3 54 2,14 = 13,8 м; Vfks = 4,9 + (0,0246 - 0,0394) • 3 54 • 2,14 = -6,31м.

Отрицательная величина объема скопления Vjf, говорит о том, что газовое скопление в вершине № 5 перестало существовать, так как унос пузырьков газа преобладает над их поступлением из предшествующих вершин.

11.Продолжительность полной очистки от газовой фазы участка между вершинами № 2 и № 3 по формуле (5.85)

- + 257,1

= 2,28 ч.

0,0237

12.Объемы скоплений, которые останутся в вершинах профиля к моменту окончания очистки объема V2-3

Vf, = 7,41 + (0,0237 - 0,0262) 354 • 2,28 = 5,39 м;

Vi = 13,8 + (0,0262 - 0,0246) • 3 54 2,28 = 15,09 м.

13.Продолжительность полной очистки от газовой фазы участка между вершинами № 3 и № 4 по формуле (5,85)

7,41

+ 286,8

= 1,61ч.

0,0262

14.Объем скопления, который останется в вершине № 4 к моменту окончания очистки объема Уз.,

Vii = 15,09 + (0,0262 - 0,0246) • 354 • 1,61 = 16,0 м

15.Продолжительность полной очистки от газовой фазы участка от вершины № 4 до конца трубопровода по формуле (5.85)

16,0

+ 405,5 + 138,5

= 3,37ч.

0,0246

16. Продолжительность полной очистки полости трубопровода от газовой фазы по формуле (5.87)

X, =2,14 + 2,28 + 1,61 + 3,37 = 9,4 4.

Пример 5.8. Проверить возможность выноса скоплений воды из нефтепровода целиком при условиях примера 5.1. наибольший угол наклона восходящего участка к горизонту равен 15".

Решение

1.Число Фруда при условиях перекачки

1,44

Fr = -

9,81-0,512

= 0,413.



2.Величина коэффициента по формуле (5.83)

к„ =0,1-99,7"--(sinl 5")"°" =0,819.

З.Число Фруда, соответствующее выносу скопления воды целиком, по формуле (5.82)

0,0341 878

Так как фактическое число Фруда меньще, чем Fr, то вынос скопления воды целиком невозможен.

ГЛАВА

ПОСЛЕДОВАТЕЛЬНАЯ ПЕРЕКАЧКА НЕФТЕЙ И НЕФТЕПРОДУКТОВ

Метод последовательной перекачки заключается в том, что различные по качеству углеводородные жидкости отдельными партиями определенных объемов перекачиваются по одному трубопроводу.

При последовательной перекачке достигается максимальное использование пропускной способности трубопровода, а другие виды транспорта освобождаются от параллельных перевозок нефтепродуктов. Однако в месте контакта последовательно движущихся жидкостей образуется смесь.

В ходе расчета последовательной перекачки решаются следующие задачи:

-определение числа насосных станций;

-определение объема смеси, образующейся при вытеснении одной жидкости другой;

-определение объема партий нефтепродуктов;

- определение числа циклов последовательной перекачки;

-определение диаметра отвода от магистрали и др.

§6.1. Определение числа насосных станций

Исходными данными для расчета нефтепродуктопровода являются данные о годовом объеме и свойствах нефтепродуктов, предназначенных к транспорту, дальности перекачки, допустимых концентрациях нефтепродуктов друг в друге, а также профиль трассы.

При гидравлическом расчете нефтепродуктопроводов сохраняется то же правило, что и при расчете нефте- и газопроводов: он выполняется для наиболее неблагоприятных условий.

Расчетная часовая пропускная способность нефтепродуктопровода определяется как сумма объемных расходов каждого из нефтепродуктов




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106



Яндекс.Метрика