Главная Переработка нефти и газа Как известно, Учитывая, что Фаза г -ffl Эимропия <Разаг Энтропия яайдеи Рис. IV.1. 06 ten Рис. IV.2. Т \дТ)р дт\ \дТ )рАр~ {IV.2) (IV .3) (IV.4) Следовательно, при фазовых переходах второго рода вторые производные от функции Гиббса скачкообразно изменяются. Примерами фазового перехода второго рода могут быть превращение одной кристаллической модификации вещества в другую, проводника в сверхпроводник и т. д. При этом скачкообразного изменения состояния тела не происходит. Непрерывно изменяется расположение атомов в кристалле, в результате чего возникает новая модификация вещества. В процессе исследований В. А. Каревским метастабильных состояний нефтегазовых растворов последние в области, близкой к давлению насыщения, оставались в макроскопическом понимании однородными и удовлетворяли условиям для преобразований второго рода - первая производная функции Гиббса (удельный объем) оставалась непрерывной ( - ) = Скачок испытывала вторая производная функции Гиббса (сжимаемость) Такие результаты можно объяснить статистико-термодинамической теорией фазовых переходов, развитой в трудах В. К. Семеетенко Фазовые переходы второго рода связаны с флуктуациями различных физических величин, характеризующих состояние вещества (температуры, давления, концентрации, плотности и т. д.). В обычных условиях флуктуации малы и не могут значительно повлиять на такие свойства и параметры систем, как энтропия, внутренняя энергия, объемы и т. д., которые являются характеристическими функциями или их первыми производными. Но флуктуации влияют на характер изменения величин, являющихся вторыми производныыи термодннанических функций - теплоемкости, сжимаемости и т. п. С ростом флуктуации ивменяются соответствующие величины при незначительном увеличении или уиеньшеник определяющего параметра (давления в случае сжимаемости, температуры в слу чае энергии и энтропии и т. д.). В статистической териоднвамЕке эта связь выражается следующим соотношением где Z - характеристическая функция; t)j - внешняя сила; [/ (9t)l - [/ - среднее значение флуктуации соответствующей величины; К - постоянная Больцмана; Т - абсолютная температура. Система устойчива при малых флуктуациях. С возрастанием флуктуации (вследствие уменьшения давления, увеличения температуры) устойчивость уменьшается, увеличиваются значения вторых производных термодинамических функций (обратных величин, характеризующих устойчивость) система переходит в микрогетерогенное состояние (т. е. вблизи точки перехода вещество приобретает дисперсное строение). Максимального развития микрогетерогенность достигает в точке фазового перехода второго рода. И фазовый переход этого вида по физической сущности сводится, таким образом, к микрофазовым переходам первого рода, происходящим в системе в области перехода второго рода. Нефть, пластовый газ и газоконденсатные системы представляют собой смесь сложного состава и поэтому, как мы увидим далее, закономерности фазовых превращении смесей углеводородов имеют свои особенности и отклонения Семенченко В. К. Избранные главы теоретической физики. М., Учпедгиз, 1960. от закономерности фазовых переходов однокомпонентных (чистых) веществ. Это относится также и к преобразованиям нефтей в метастабильном состоянии. Установлено, например, что фазовые превращения нефтей в этой области имеют признаки, свойственные не только чисто фазовым переходам второго рода. В некоторых экспериментах В. А. Каревского, сопровождающихся пнтенсивными преобразованиями структуры нефти, наблюдалось (до 0,2° С на стенке камеры прибора) понижение температуры системы. Как известно, тепловые эффекты при фазовых переходах второго рода должны отсутствовать. Аналогично фазовым переходам второго рода (согласно В. К. Семенченко) с флуктуациями тесно связаны и критические явления. Прохождение системы через дисперсное состояние является общей чертой фазовых переходов второго рода и критических явлений (с этим процессом связывается возникновение критической опалесценции в чистых веществах и жидких смесях). При этом наблюдаются кинетические аномалии, свойственные именно дисперсному состоянию. Например, возрастает вязкость системы в критической области, что наблюдалось у ряда жидкостей некоторы.ми исследователями. Критические явления и фазовые переходы второго рода аналогичны в известных пределах и по другим признакам. При критических явлениях наблюдается, как и при фазовых переходах второго рода, скачок вторых производных функции Гиббса, в то время как первые производные изменяются непрерывно. Критические явления отличаются от фазовых переходов второго рода тем, что в критической точке исчезает граница раздела между двумя макроскопическими фазами. Как уже упоминалось, пря фазовых переходах второго рода система в макроскопическом смысле остается однородной. § 2. СХЕМЫ ФАЗОВЫХ ПРЕВРАЩЕНИЙ УГЛЕВОДОРОДОВ В процессе эксплуатации месторождений в пластах непрерывно изменяются давление, количественное соотношение газа и нефти, а иногда и температура. Это сопровождается непрерывными изменениями состава газовой и жидкой фаз и переходом различных углеводородов из одной фазы в другую. Особо интенсивные процессы таких превраш;ений происходят при движении нефти по стволу скважины от забоя к устью. Вследствие быстрого падения давления из Нефти выделяется значительное количество газа и около устья поток превращается иногда в тонкодисперсную взвесь микрокапель нефти в газовой среде. Точно также и дальнейшее движение нефти и газа к потребителю сопровождается непрерывными фазовыми превращениями. Например, газ, содержащий значительное количество бензиновых фракций в парообразном состоянии, проходит специальную обработку, при которой из него извлекается газовый бензин; из нефти, уже не содержащей газ, стараются извлечь и уловить наиболее летучие жидкие фракции для уменьшения потерь нефтепродуктов от испарения при хранении их в резервуарах и т. д. Закономерности фазовых переходов и фазовое состояние газонефтяных смесей при различных условиях необходимо знать для решения многих задач. Например, с учетом закономерности фазовых изменений углеводородов составляется проект разработки газоконденсатных месторождений . Теорией фазовых изменений пользуются для 1 О газоконденсатных месторождениях см. в последующих параграфах настоящей главы. 140 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 [ 43 ] 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
||