Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 [ 48 ] 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Из рис. IV.И следует, что с увеличением молекулярной массы углеводорода (т. е. чем выше температура кипения) требуется большее давление для перевода его в газообразное состояние в смеси с метаном. Например, при давлении 19,5 МПа и =80°С в газообразное состояние в смеси с метаном переходит 22% *г гексана (Q) или 2% декана (Со). По результатам опыта с понижением температуры задерживается переход углеводородов в газовое состояние в смеси с метаном. По данным Я. Д. Саввиной и А. С. Ве-ликовского при давлении 19,5 МПа и температуре 40° С в газовое состояние в смеси с метаном может перейти лишь 8% гексана, либо 0,4% декана.

Из рис. IV. И также следует, что критическое давление смеси повышается с увеличением ее молекулярной массы (или что то же - с увеличением температуры кипения второго компонента системы).

При одинаковой молекулярной массе температуры кипения изомерных парафиновых углеводородов более низкие, чем нормальных и поэтому изомеры растворяются в метане в больших количествах, чем нормальные. Это относится также и к процессам обратного испарения - при одинаковых условиях изомерные углеводороды должны переходить в газовое состояние в большем количестве, чем нормальные углеводороды с той же молекулярной массой.

На рис. IV. 12 приведены изотермы бинарных смесей метана с н-гексаном, циклогексаном и бензолом. Все эти углеводороды имеют одинаковое число атомов углерода в молекуле и во всех этих системах менее летучий компонент имеет одинаковую температуру


0,2 D.t 0,6 Мольные доли метана

0,8 1,0

Рис. IV.12. Изотермы фазового равновесия метана с углеводородами различных групп (углеводороды с одинаковым числом атомов

в молекуле), (по А. С. Великовскому и Я. Д. Саввиной). 1 - мотан - н-гексан; 2 - метан - циклогексан; 3 - метан - бензол.



кипения. Критическое же давление бензола значительно отличается от критического давления других тяжелых компонентов.

Из рис. IV. 12 следует, что в системах с нафтеновым углеводородом изотермы с одинаковой температурой находятся в области более высоких давлений, чем в системе с парафиновым углеводородом. Изотерма системы с ароматическим углеводородом лежит в области еще более высоких давлений. Следовательно, при одинаковых давлениях и температурах парафиновые углеводороды растворяются в метане лучше нафтеновых и ароматических той же температуры кипения. И для перевода ароматических углеводородов в однофазное газовое состояние требуется значительно большее давление, чем для нафтеновых и еще более значительное, чем для парафиновых углеводородов.

В смесях метана с более тяжелыми углеводородами, имеющими критические давления, близкие к критическому давлению смеси метан - бензол, растворимость бензола в метане больше растворимости парафиновых углеводородов . Это же можно сказать о смесях толуола с метаном и парафиновыми углеводородами - т. е. при одинаковых критических давлениях ароматический углеводород растворяется в метане лучше, чем парафиновый.

Приведенные выше изотермы позволяют судить также и о растворимости метана в различных углеводородах.

Как уже было упомянуто, растворимость метана характеризуется расположением левой ветви изотерм, начинающейся на диаграмме давление - состав от точки, соответствующей упругости пара чистого менее летучего компонента (нулевое содержание метана) и продолжающейся до критической точки.

Из рис. IV.11 и IV.12 следует, что с уменьшением молекулярной массы углеводорода нормального строения растворимость метана в нем при одинаковых условиях повышается (за исключением области давлений, близких к упругости паров индивидуальных компонентов). С приближением к критической области для всех углеводородов характерно более резкое повышение растворимости метана.

Изомерные парафиновые углеводороды растворяют метан хуже, чем углеводороды нормального строения. Это объясняется тем, что нормальные углеводороды по строению молекул отличаются от метана меньше, чем изомерные (на растворимость метана в парафиновых углеводородах влияет сходство в строении).

Растворимость метана в парафиновых углеводородах выше, чем в ароматических углеводородах.

Приведенные изотермы бинарных систем позволяют также проследить за влиянием давления и температуры на растворимость в метане углеводородов, образующих конденсат.

Степанова Г. С, Выборнова Я. И., Великов-с к и й А. С. Фазовые равновесия смесей метана с различными углеводородами, входящими в состав конденсата. «Газовое дело», 1965, № 9.



Как уже упоминалось, для каждой углеводородной бинарной смеси свойственно увеличение растворимости жидких углеводородов в газе с повышением давления и температуры. При этом с ростом давления увеличивается переход в газовую фазу все более тяжелых углеводородов (рис. IV.11). Более слабо на переход углеводородов в газовое состояние в присутствии метана влияет повышение температуры (если давление значительно отличается от критического). Рост температуры при постоянном давлении приближает систему к критической области, где растворимость углеводородов в метане значительно увеличивается. При контакте метана с тяжелыми углеводородами (нефтью) с увеличением давления в системе заметно утяжеляется состав углеводородов, растворяющихся в метане. Повышение температуры слабо влияет на этот процесс. Общее же количество жидких углеводородов, перешедших из нефти в газовое состояние растет с повышением как давления, так и температуры.

§ 4. КРИТИЧЕСКАЯ ТЕМПЕРАТУРА И КРИТИЧЕСКОЕ ДАВЛЕНИЕ МНОГОКОМПОНЕНТНЫХ УГЛЕВОДОРОДНЫХ СМЕСЕЙ

Эти параметры многокомпонентных углеводородных смесей относятся к числу основных, характеризующих их объемное и фазовое поведение. По значению критического давления и температуры углеводородной смеси можно судить о фазовом состоянии ее при различных р и t. Критические параметры широко используются при расчетах сжижения и компрессии углеводородных смесей, а также нри выборе их для закачки в пласт с целью увеличения нефтеотдачи и т. д.

В предыдущих разделах (см. гл. IV, § 2) отмечалось, что критические параметры даже простейших бинарных смесей метана с более тяжелыми углеводородами в широком диапазоне изменяются в зависимости от состава. При изменении количественного соотношения компонентов, как было показано на рис. IV.4, б критические точки различных смесей С, С, Сд и т. д. образуют кривую, которую принято называть огибающей критических точек системы (или критической кривой). Имеется достаточно экспериментальных данных о критических параметрах лишь простых компонентов, по которым можно построить огибающие критических точек этих простых систем. Для сложных многокомпонентных смесей построение таких огибающих сильно осложняется из-за недостатка данных о значениях критических параметров чрезвычайно широкого многообразия смесей, которые встречаются на практике. Поэтому критические параметры сложных смесей обычно определяют расчетным способом.

Г. С. Степановой, например, предложен следующий способ оценки параметров в критической точке многокомпонентных систем. Сложная углеводородная смесь условно приводится к бинарной системе, одним из колшонентов которой является метан, а вторым - все остальные компоненты (Сз+высшие). Далее для определения критических параметров этой условной бинарной системы используются известные свойства истинных бинарных смесей метана с индивидуальными




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 [ 48 ] 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100



Яндекс.Метрика