Главная Переработка нефти и газа имеются поры разного поперечного сечения, формула (115) может быть представлена в виде Из (115) п (123) следует, что (124) где Г1, Г2, Гп - радиусы пор разного сечения; пы, т, пг„ - соответствующие им коэффициенты удельной эффективной пористости, представляющие собой суммарные объемы однотипных по сечению пор в единице объема образца капиллярной системы; - эффективная пористость; т„ - полная пористость. Для определения радиусов Г1, Г2, гз и т. д. наибольший размер пор малопроницаемой мембраны в установке (см. рис. 10) должен быть значительно меньше наименьшего сечения поровых каналов в капиллярной системе. Соблюдение этого условия необходимо для предотвращения прохождения воздуха или азота через мембрану в процессе вытеснения жидкости из капиллярной системы. Искомая величина радиусов ибг при заданном давлении подсчитывается по формулам: 2ctcos9 /о-\ Рк =- (12э) CTCOse hor\ Рк = -.-» (126) где Рк - капиллярное давление, дин/см; а - поверхностное натяжение насыщающей образец жидкости на границе с воздухом или азотом, дин/см; 0 - краевой угол смачивания, обычно принимаемый в опытах равным нулю. При оценке радиусов пор по формулам (124) и (126) вытеснение жидкости из образца породы осуществляют при разных перепадах давления, каждому из которых, согласно (125), соответствует определенная величина радиуса г порового канала. Для этого исследуемый образец породы, мембрану установки и помещаемую между ними прокладку фильтровальной бумаги с целью улучшения контакта тщательно насыщают под вакуумом керосином. В процессе нагнетания воздуха или азота в герметически закрытый цилиндр прибора керосин из образца вытесняется в мембрану и далее в измерительную стеклянную бюретку. По количеству появившегося в пипетке керосина судят об удельной пористости при данном размере пор. Оценку удельной пористости можно проводить и по разности масс образца до и после каждого очередного вытеснения из него керосина. Так как проницаемость пород в лабораторных условиях определяется по образцам правильной геометрической формы с обжатой резиновой манжетой боковой поверхностью, эти условия необходимо соблюдать и в случае оценки размеров пор на капиллярной установке. в противном случае сравнительная оценка результатов определения среднего радиуса пор по формулам (118) и (124) неправомерна. Дело в том, что в случае необлицованной боковой поверхности образца породы по мере повышения давления в цилиндре капиллярной установки воздух может двигаться по наикратчайшим путям в обход суженных сечений поровых каналов и уменьшать влияние их на результаты определения среднего радиуса нор по формуле (124). По этой причине радиус пор, подсчитываемый по формуле (124), искусственно завышается. В связи с этим при исследованиях размеров поровых каналов на капиллярной установке боковую поверхность образца породы облицовывают (покрывают менделеевской замазкой, эпоксидной смолой или 15%-ным раствором целлулоида в ацетоне). Применение керосина для насыш,ения образца породы, мембраны и фильтровальной бумаги предпочитается в данном случае потому, что керосин обладает высокой смачивающей способностью и имеет вдвое меньшее поверхностное натяжение на границе с воздухом, чем вода. Благодаря этому для вытеснения керосина из образца породы требуется меньшее давление. Кроме того, предполагается, что в этом случае имеется больше оснований принимать угол отступления 0 = 0 при расчетах ио формулам (125) и (126). Однако исследования автора [127] показали, что и при изложенных условиях средний радиус нор по формуле (124), как это видно из табл. 10, получается в 1,5-2 раза больше, чем по формуле (119). Поскольку формула (119) учитывает структурные особенности пород, получаемые по ней значения г можно рассматривать как истин- Таблица 10 Результаты определения г по формулам (119) и (124)
ные. Следовательно, расхождения в определениях г рассматриваемыми методами (см. табл. 10) целиком относятся ко второму методу и прежде всего к тому, что краевой угол смачивания 9 принимается в расчетах равным нулю. Вследствие непостоянства поперечного сечения поровых каналов угол 9 в действительности при вытеснении керосина из образца породы воздухом изменяется от О до 90°. В силу этого величина г, определяемая по формуле (124), получается завышенной. Если, исходя из этого, принять в расчетах среднюю величину 9 = 45°, то, по-видимому, результаты определения среднего радиуса пор г по формуле (124) будут более близки к истине. В табл. И приводятся результаты расчетов среднего радиуса пор г по формулам (119) и (124) для тех же образцов, которые были использованы при составлении табл. 10. Таблица 11 Результаты определения г по формулам (119) и (124) при 9 = 45° и s = 0,96
Согласно суммарным кривым, представляемым на рис. 24, предельный объем вытесненного керосина из этих образцов породы на капиллярной установке составил примерно 92-96% от объема пор. Если эту часть пор образца принять за эффективные поры, пренебрегая объемом керосиновой пленки на поверхности частиц, то будем иметь тэ/п = 6 = 0,92-0,96. При составлении табл. И величина коэффициента проточности е была принята равной 0,96. Данные табл. 11 свидетельствуют о том, что абсолютная величина краевого угла 9 при вытеснении керосина из образцов породы воздухом очень близка к 45°. Средняя относительная погрешность со знаком минус составила 33,3%, а со знаком плюс 14,5%. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||