Главная Переработка нефти и газа на основании последующих теоретических исследований [102]. Введение коэффициента ф в формулы (8) и (9) позволяет определять эффективную удельную поверхность пористой среды независимо от степени проточпости, изолированности и извилистости поровых каналов. СОПОСТАВЛЕНИЕ ОТКРЫТОЙ И ЭФФЕКТИВНОЙ УДЕЛЬНЫХ ПОВЕРХНОСТЕЙ Результаты определения удельной поверхности песчаников девонских отложений Туймазипского месторождения по Б. В. Деря-гипу и по Ф. И. Котяхову (табл. 4), рассчитанные по формуле (9), показывают, что удельная поверхность одних и тех же образцов пород, пайдеппая по методу Б. В. Дерягина, выше, нежели подсчитанная по формуле (9). В среднем это превышение в рассматриваемом случае составило 31%. Подобная картина наблюдалась многими исследователями [57, 91, 219, 247] и объясняется, в частности Б. В. Дерягиным и др. [57], тем, что при фильтрации воздуха коэффициент сопротивления уменьшается вследствие газокипетического «скольжения» молекул по стенкам пор. Таблица 4 Данные об эффективной и открытой удельной поверхности s (в см2/смЗ) образцов пород Туймазинского месторождения
Следует отметить, что подобные сопоставления лишены смысла, так как эти методы основаны на принципиально различных качественных процессах: метод Б. В. Дерягина - па молекулярном движении в пористой среде глубоко разреженного воздуха, а метод Ф. И. Ко-тяхова - па струйном движении воздуха, при котором перемещение молекул крайне стеснено. Вследствие этого при струйном (телескопическом) движении воздуха в пористой среде тупиковые пустоты он минует, и связанная с ними поверхность не фиксируется расчетными формулами (фиксируется лишь поверхность, которая непосредственно соприкасается с движуш;имся потоком воздуха). При кнудсеновской течении, которое представляет собой движение молекул не просто разреженного, а глубоко разреженного газа, как отмечалось выше, свободный пробег молекул существенно превышает поперечные размеры поровых каналов. В этом случае по условиям вакуума неизбежен непрерывный обмен молекулами между проточной и непроточной частями пустот пористой среды. И этот обмен тем полнее, чем свободнее и больше пробег молекул. Таким образом, создаются условия, при которых в течении газа принимают участие все открытые пустоты и связанная с ними поверхность пористой среды. Именно этим обстоятельством и объясняется практическое совпадение результатов определения удельной поверхности пористых тел методами адсорбции и Б. В. Дерягина [57]. Поэтому измерения, связанные с методом Б. В. Дерягина, рассматриваются выше как определения открытой удельной поверхности, а вычисления по формуле (9) Ф. И. Котяхова как определения эффективной удельной поверхности. Следовательно, рассмотренные методы ие исключают друг друга, а дополняют и расширяют представления о пористой среде и, в частности, о горных породах. Уже из-за одного того, что в проточных пустотах при фильтрации жидкостей в пористых средах преобладает конвективная диффузия, а в непроточных - молекулярная, количественная сторона многих процессов, очевидно, должна зависеть от соотношения эффективной и открытой удельной поверхности. Из табл. 4 видно, что эффективная удельная поверхность может составлять всего лишь 0,7 открытой. Решающую роль в этом расхождении, как показали исследования, играет проницаемость пористой среды: чем меньше проницаемость, тем больше расхождение между величинами указанных удельных поверхностей. Это означает, что с уменьшением проницаемости горных пород объем проточных пор и связанная с ними удельная поверхность уменьшаются. Изложенное объяснение вполне согласуется с результатами исследований структуры поровых каналов и водонефтенасыщенности коллекторов нефтяных месторождений. С уменьшением проницаемости пород количество неподвижной воды в них увеличивается. Надо заметить, что использование удельной поверхности капиллярных систем в качестве единого понятия без подразделения на изложенные выше виды (полной, открытой и эффективной) послужило в некоторой мере причиной отсутствия ясного представления об источниках расхождения результатов определения ее разными методами. В одних случаях эти расхождения приписывались влиянию методики определения удельной поверхности, в других - различной степени окатанности частиц и т. д. Так или иначе это привело в разное время к появлению различных расчетных формул, уточняющих, по замыслу их авторов, определение удельной поверхности.- В основном эти формулы сводятся к двум Т1шам: к формуле где коэффициент С принимается равным 3530, 4330, 4500, 5850, 7700 [197, 251] в зависимости от окатаппости и отсортировашюсти частиц;,m - коэффициент пористости и к - коэффициент проницаемости, Д; и формуле Б. В. Дерягина (2) с коэффициентом 8/3 вместо 24/13. Однако эти формулы не получили распространения. ФОРМА И ОКАТАННОСТЬ ЧАСТИЦ ОБЛОМОЧНЫХ ПОРОД Наряду с гранулометрическим составом и степенью дисперсности терригенных пород большое значение имеет форма и окатаппость частиц, слагаюш,их породу, которые влияют на пористость, проницаемость и прочность пород. По форме и окатанности частиц можно судить в обш,их чертах об условиях переноса и отложения их. Правда, оценка роли формы и окатанпостЦ частиц в данном случае носит пока качественный характер, так как необходимых математических связей для количественной характеристики еш;е не найдено. Однако это не исключает необходимости изучения этих характеристик, поскольку качественная оценка, вероятно, поможет перейти и к количественным определениям. Поэтому изучению формы и поверхности частиц терригенных пород придают такое же значение, как и изучению гранулометрического состава. Суш;ествует несколько методов количественной оценки формы частиц. Из них наиболее распространен метод Уэделла [280]. Согласно этому методу под «сферичностью» частицы понимается отношение величины поверхности шара s, равновеликого данной частице, к действительной поверхности частицы S, т. е. = (10) или приближенно отношение диаметра круга, эквивалентного по ллош;ади горизонтальной проекции данной частицы, к диаметру минимальной описанной около частицы окружности, т. е. w = . (И) По данным Уэделла, величины \ ш w для одних и тех же частиц мало отличаются друг от друга. Округлость исчисляется им по формуле 0 1 2 3 4 5 6 [ 7 ] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||