Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 [ 74 ] 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

Глава VIII ВОДОНЕФТЕГАЗОНАСЫЩЕННОСТЬ ГОРНЫХ ПОРОД

РАСПРЕДЕЛЕНИЕ НЕФТИ, ГАЗА И ВОДЫ В ГОРНЫХ ПОРОДАХ

Известные ныне промышленные скопления нефти и газа в недрах земной коры приурочены в основном к осадочному комплексу пород, сформировавшихся в морских или полуконтинентальных условиях. В силу этого до появления в них нефти и газа они были полностью или частично заполнены водой. В зависимости от палеогеографической и гидрогеологической обстановки, особенностей литогенеза и формирования залежей нефти и газа в начальный период, указанная вода могла сохраняться или многократно замещаться поверхностными или глубинными водами. Следовательно, процесс формирования залежей нефти и газа так или иначе сопровождался вытеснением воды и газопаровой фазы из пор, каверн и трещин.

Эффективность замещения воды нефтью и газом, разумеется, была различной, так как зависела от степени преодоления капиллярных сил, возникающих на границах раздела соприкасающихся фаз, и от структуры пустотного пространства горной породы. Анализ этих факторов [108, 120], а также специальные исследования керна карбонатных пород, отбиравшегося при промывке скважин раствором на нефтяной основе [138], привели автора к выводу, что в трещинах и кавернах капиллярно-связанная вода, как правило, практически отсутствует. Будучи непременным спутником нефти и газа, она содержится в залежах в виде молекулярно-связанной пленки на стенках каверн, пор и трещин [134, 161], в изолированных пустотах и в капиллярно связанном состоянии в непроточной части пустот.

Вследствие микрообходов, обусловленных неоднородностью пустотного пространства, некоторая часть погребенной воды в виде микрокапель может задерживаться в пустотах малого размера, окруженных пустотами большого размера. В коллекторах горных пород она вытеснялась нефтью и газом в основном из проточной части пустот, в которых давление вытеснения превышало каттллярное давление водонефтегазовых менисков или совпадало с действием капиллярных сил. Например, исследованиями П. В. Тоймера было установлено, что при достаточном количестве в нефти поверхностно-активных веществ вода может вытесняться нефтью из карбонатных пород в результате капиллярной пропитки. Именно этим и объясняется нередко наблюдающееся спорадическое распределение нефти в виде ореолов в матрице карбонатных пород около трещин. Не исключено, что это является также одной из главных причин малого содержания погребенной воды в газонефтенасыщенных карбонатных породах по



сравнению с содержанием ее в терригенных породах при прочих равных условиях. При этом исследования карбонатных пород показали [137], что минерализация воды в изолированных пустотах может приближаться к минерализации воды современных морских бассейнов и существенно отличаться от минерализации ее в открытых пустотах.

Вместе с водой или без нее в изолированных пустотах может находиться нефть, если появлению ее предшествовала изоляция пустот в периоды литогенеза.

В связи с тем, что от соотношения нефти, газа и воды в коллекторе зависят запасы нефти и газа в залежах, изучению этого вопроса посвящено много работ. Началом их послужили исследования Н. Т. Линдтропа и В. М. Николаева, в которых впервые в 1929 г. был поставлен вопрос о необходимости учета погребенной воды при оценке запасов нефти в залежах. Последующими исследованиями [147 и др.] было установлено, что количество погребенной воды в залежах нефти и газа может колебаться от нескольких процентов до 50-60% от объема пор, в зависимости от описанных выше свойств пород, нефти, газа и воды и от условий формирования самих залежей. В частности, установлено [121], что с увеличением неоднородности коллектора по пористости водонасыщенность его увеличивается.

При количественной оценке соотношения воды, нефти, газа в горных породах пользуются различными коэффициентами: коэффициентом водонасыщенности (а), под которым понимается отношение объема воды к объему открытых пустот матрицы, т. е. содержание воды в единице объема открытых пустот, или коэффициентом влажности (w), представляющим собой содержание погребенной воды в единице объема породы, и коэффициентами нефтенасыщенности и газонасыщенности, из которых первый характеризует содержание нефти, а второй - содержание газа в единице объема открытых пустот.

Согласно этим понятиям между коэффициентами водонасыщенности (а) и влажности (w) существует следующая связь:

W = т,а, (335)

где тПо - коэффициент открытой емкости пустот матрицы, представленных порами или порами и кавернами вместе.

ОТБОР И КОНСЕРВАЦИЯ КЕРНА

Для получения достоверных значений пористости, проницаемости, и особенно водонефтегазонасыщенности очень важно, чтобы керн сохранил свою первоначальную структуру, т. е. чтобы он не был разрушен и не был перегрет вследствие неправильного режима бурения колонковым долотом и недостаточного охлаждения долота промывочной жидкостью. В промышленных условиях технология бурения при отборе керна обычно уделяется очень мало внимания, от чего результаты анализа кернов во многих случаях получаются неточными.



Определение абсолютных (геологических) и балансовых запасов нефти и газа, нефтегазоотдачи пород, а также минерализации погребенной воды основано главным образом на установлении действительной водонефтенасыщенности пород по керну. Для этого исследователь должен располагать представительным керном, отобранным из нефтегазоносных отложений в оценочных скважинах: в одних - с применением обычного глинистого раствора, в других - с применением безводного раствора на нефтяной основе [96, 116, 125]. Независимо от способа приготовления этих растворов первые из них отфильтровывают в пласт и керн воду, а вторые - углеводородную жидкость [125]. Поэтому непременным условием применения их для получения объективной информации о содержании погребенной воды в коллекторе, о ее минерализации и о степени вытеснения нефти из керна фильтратом глинистого раствора является отбор керна из незаводненной части коллектора и не содержащей свободной воды. Дело в том, что свободная вода в коллекторе вытесняется из керна фильтратами водного и нефтяного растворов. По этой причине при использовании раствора на нефтяной основе нефтенасыщенность керна завышается, а водонасыщенность занижается; в заводненной части пласта, помимо этого, исключается возможность установления действительной минерализации погребенной воды в залежи. По тем же причинам применение водного глинистого раствора в этом случае исключает возможность установления степени промывки керна фильтратом глинистого раствора. Дальше будет показано, как при соблюдении изложенных выше условий отбора керна можно судить о нефтенасыщенности и нефтеотдаче горных пород.

Для получения информации о действительной нефтегазоводонасы-щенности коллекторов иногда прибегают к отбору керна с применением глинистых растворов, содержащих те или иные индикаторы. Однако применение таких растворов, как и обычного глинистого раствора, не может обеспечить установление истинного содержания погребенной воды в залежи, так как, согласно исследованиям [192], часто наблюдается полная промывка керна фильтратом глинистого раствора, при которой вытесняется и погребенная вода. Поэтому наиболее ценна, если не единственно объективна, комплексная информация по керну, отобранному при применении водных и безводных растворов. Эта информация должна быть также контролирующим критерием интерпретации результатов геофизических исследований скважин.

В незаводненных, энергетически истощенных залежах, на которых при бурении скважин неизбежны поглощения раствора, большое значение имеет отбор керна при давлении столба промывочной жидкости (водной и безводной) в скважине, равном давлению в пласте или меньшего. В связи с этим методы с местной промывкой скважин и основанные на применении аэрированных жидкостей представляют большой практический интерес.

Во избежание искажения информации о действительной нефтега-зоводонасыщенности коллектора вследствие проникновения в него (и в керн) вод из вышележащих отложений и с поверхности земли,




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 [ 74 ] 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94



Яндекс.Метрика