Главная Переработка нефти и газа Решая дифференциальное уравнение [100], получим, что скорости движения мениска двух жидкостей являются функцией времени, а расход жидкостей определяется как произведение скорости на поперечное сечение капилляра. Таким образом, закон движения двух несмешивающихся жидкостей в капиллярах отличается от закона движения гомогенной жидкости, во-первых, наличием избыточного капиллярного давления, а во-вторых, тем, что движение двух несмешивающихся жидкостей вследствие различия их вязкостей неравномерное.
Рис. 78. Схема движения мениска при вытеснении жидкости, не смачивающей капилляр, смачивающей жидкостью Рис. 79. Схема движения мениска при вытеснении жидкости, смачивающей капилляр, несмачивающей жидкостью Максимальная скорость движения мениска при pi <Ср2 будет при х = L (см. рис. 78), т. е. max 8nii а при х = О она будет иметь минимальное значение {Pi~P2 + PK - Lp2sina) (362) (363) в случае р i > р 2 максимальное значение скорость v будет иметь при х = О, а минимальное при х = L. В приведенных формулах г - радиус капилляра, см; pi, - давления на концах капилляра; - избыточное капиллярное давление; L - длина капилляра; а - угол наклона капилляра к горизонту; pi, рз - плотности жидкостей 7 и 2; ц., 2 - абсолютные вязкости жидкостей 1 п 2. Вытеснение смачивающей жидкости из капилляра. Рассмотрим случай, когда жидкость 2 лучше смачивает стенки капилляра и мениск оказывается выпуклым относительно жидкости 1 (рис. 79). Движение мениска происходит по направлению от точки А к точке В. Так как жидкость 2 смачивает капилляр лучше, чем жидкость 1, то в этом случае при движении жидкости 1 на стенках капилляра будет оставаться пленка жидкости. Допустим, что жидкость, образующая указанную пленку, в процессе рассматриваемого движения жидкостей неподвижна. Тогда движение этих жидкостей в капилляре следует рассматривать только через сечение его радиусом г, полагая при этом, что скольжение жидкости 1 по пленке жидкости 2 отсутствует [1161. Согласно изложенному условию задачи, движение жидкостей i ж2 будет происходить за счет перепада давления Ар = (pi - - Рк) т. е. избыточное капиллярное давление, действующее по направлению, противоположному движению жидкостей, будет меньше pi - р. Решением соответствующих уравнений найдем функциональную зависимость между расстоянием х, пройденным мениском от начала капилляра, и временем t. Очевидно, что скорости движения мениска и расходы жидкостей при движении жидкости в пленке, прилегающей к стенкам капилляра, по этим формулам будут заниженные, и разница между ними и действительными данными будет тем больше, чем больше начальная толщина пленки. Для определения толщины пленки, образующейся на стенках пор в естественных нефтяных пластах, нами были проведены специальные исследования с кернами различных месторождений. В этих исследованиях извлеченный из скважин керн, содержащий погребенную воду и нефть, продували азотом до постоянной эффективной проницаемости, после чего определяли его динамическую пористость. Затем керн экстрагировали и определяли абсолютные значения пористости и проницаемости. На основании имеющихся данных о динамической и абсолютной пористости установлено, что толщина пленки зависит от размера пор пласта и в нашем случае составляет примерно 0,1 радиуса пор. Поскольку средний радиус пор в исследованных кернах колебался от 2 до 8 мкм, толщина пленки на поверхности песчинок составляла от 0,2 до 0,8 мкм. Эти результаты согласуются с результатами других исследователей [58, 60]. Основываясь на исследованиях Б. В. Дерягина и М. М. Самы-гина [60], Б. В. Дерягина и М. М. Кусакова [59], можно считать, что двухслойная пленка воды и нефти на поверхности частиц пласта при установленной нами толщине должна обладать аномальными свойствами, т. е. иметь несколько повышенную вязкость по сравнению с вязкостью основной массы жидкости. Решение уравнений движения несмешивающихся жидкостей [100] показывает, что с увеличением вязкости и толщины пограничной пленки и с увеличением значения избыточного капиллярного давления по отношению к перепаду давления продолжительность продвижения границы раздела жидкостей в капиллярах возрастает, а следовательно, средняя скорость их движения уменшпается. Однако это влияние практически весьма мало, особенно для капилляров большого размера. Заметное влияние на скорость движения жидкостей вследствие аномальных свойств пограничной пленки наблюдается в капиллярах размером меньше 1 мкм. Как уже отмечалось нами ранее [149], основная масса промышленной нефти поступает из пласта в скважины по порам диаметром больше 1 мкм. Следовательно, влияние пограничной пленки на движение водонефтяного контакта в нефтяном пласте практического значения не имеет и его можно не учитывать.
ЗРис. 80. Схема вытеснения нефти водой из капилляра Установленные теоретические выводы подтверждены экспериментальными исследованиями [100]. Вытеснение несмешивающихся жидкостей из цилиндрических трубок и нефтеотдача. Коэффициент нефтеотдачи пласта - одна из важных характеристик разработки залежи. Под коэффициентом нефтеотдачи понимают отношение объема извлеченной нефти к ее объему, первоначально содержащемуся в пласте в естественных условиях. Вытеснение нефти из залежей водой происходит, как известно, в два периода: безводный и водный. Определение нефтеотдачи пород в эти периоды весьма важно для рациональной разработки нефтяных месторождений. В связи с этим необходимо выяснить, как могут влиять на коэффициент нефтеотдачи в водный и безводный периоды вытеснения нефти из пористой среды перепад давления, соотношение вязкостей нефти и воды, размер поровых каналов, микронеоднородность пористой среды и т. д. Кроме того, интересен вопрос о продолжительности вытеснения нефтп в различные периоды и количестве воды, необходимом для извлечения промышленных запасов. Всестороннее теоретическое освещение затрагиваемого вопроса представляет значетельную сложность, поэтому вначале его следует рассмотреть применительно к идеальному грунту и отдельным капиллярам. В этом случае под «нефтеотдачей» понимается отношение объема вытеснения нефти к ее первоначальному объему. Вытеснение нефти в безводный период. Рассмотрим вопросы, связанные с определением количества вытесняемой жидкости к моменту достижения мениском выхода капилляра. Предположим, что из цилиндрического горизонтального капилляра вытесняется нефть водой при перепаде давления Ар = pi - ра (рис. 80), причем Др значительно превышает величину капиллярного давления, обусловленного кривизной мениска. При изложенных условиях скорость перемещения водонефтяного контакта в различных его точках, согласно параболическому закону Стокса и результатам исследований, изложенным ранее [100], определится формулой Tiil+MJ где Ар - перепад давления; а - радиус капилляра; г - расстояние произвольно взятой точки водонефтяного контакта от оси капилляра; (1,3 и ц,н - абсолютные вязкости воды и нефти; х - расстояние рассматриваемой точки водонефтяного контакта от начала капилляра; I - дл1ша капилляра. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 [ 81 ] 82 83 84 85 86 87 88 89 90 91 92 93 94 |
||||||||||||||||||||||||||||||||||||