Главная Переработка нефти и газа расчет количества жидкости разрыва и проппанта, необходимых для создания трещины требуемых размеров и проводимости; технику для определения оптимальных параметров нагнетания с учетом характеристик проппанта и технологических ограничений; комплексный алгоритм, позволяющий оптимизировать геометрические параметры и проводимость трещины с учетом продуктивности пласта и системы расстановки скважин, обеспечивающий баланс между фильтрационными характеристиками пласта и трещины и основанный на критерии максимизации прибыли от обработки скважины. Создание оптимальной технологии ГРП подразумевает соблюдение следующих критериев [137]: обеспечение оптимизации выработки запасов месторождения; максимизацию глубины проникновения проппанта в трещину; оптимизацию параметров нагнетания жидкости разрыва и проппанта; минимизацию стоимости обработки; максимизацию прибыли за счет получения дополнительной нефти и газа. В соответствии с этими критериями можно выделить следующие этапы оптимизации проведения ГРП на объекте: 1. Выбор скважин для обработки с учетом существующей или проектируемой системы разработки, обеспечивающий максимизацию добычи нефти и газа при минимизации затрат. 2. Определение оптимальной геометрии трещины - длины и проводимости - с учетом проницаемости пласта, системы расстановки скважин, удаленности скважины от газо- или водонефтяно-го контакта. 3. Выбор модели распространения трещины на основе анализа механических свойств породы, распределения напряжений в пласте и предварительных экспериментов. 4. Подбор проппанта с соответствующими прочностными свойствами, расчет объема и концентрации проппанта, необходимых для получения трещины с заданными свойствами. 5. Подбор жидкости разрыва с подходящими реологическими свойствами с учетом характеристик пласта, проппанта и геометрии трещины. 6. Расчет необходимого количества жидкости разрыва и определение оптимальных параметров нагнетания с учетом характеристик жидкости и проппанта, а также технологических ограничений. 7. Расчет экономической эффективности проведения ГРП. Совместными усилиями Американского газового исследовательского института (GRI) и крупнейших нефтяных и газовых компаний США (Mobil Oil Co., Amoco Production Co., Schlumberger и др.) разработан новый технологический комплекс, включающий в себя мобильное оборудование GRI для тестирования и контроля качества операции ГРП, агрегат GRI для исследования реологии, трехмерную компьютерную программу для "дизайна" трещины FRACPRO, приборы для определения профиля напряжений в пласте и микросейсмическую технику для определения высоты и азимута трещины [213, 225, 242]. Использование новой технологии позволяет подобрать жидкость разрыва и проппант, максимально соответствующие конкретным условиям, и проконтролировать распространение и раскрытие трещины, транспортировку проппанта во взвешенном состоянии вдоль всей трещины, успешное завершение операции. Знание профиля напряжений в пласте позволяет не только определить давление гидроразрыва, но и предсказать геометрию трещины. При высоком различии напряжений в коллекторе и в непроницаемых барьерах трещина распространяется на большую длину и меньшую высоту, чем в пласте с незначительной разницей этих напряжений. Учет всей информации в трехмерной модели позволяет быстро и достоверно прогнозировать геометрию и фильтрационные характеристики трещины. Апробация новой технологии ГРП на шести газовых месторождениях Техаса, Вайоминга и Колорадо показала ее высокую эффективность для низкопроницаемых коллекторов. В некоторых случаях гидравлический разрыв происходит при значительно более низких давлениях, чем начальные напряжения в пласте. Охлаждение пласта в результате закачки в нагнетательные скважины холодной воды, существенно отличающейся по температуре от пластовой, приводит к снижению упругих напряжений и гидравлическому разрыву в нагнетательных скважинах при забойных давлениях, используемых при заводнении. Исследования, проведенные на месторождении Прадхо-Бэй (США), показали, что полудлина появившихся таким образом трещин состав- ляет 6-60 м. В настоящее время общепризнано, что в нагнетательных скважинах при большом контрасте температур пласта и закачиваемой воды происходит гидравлический разрыв [174, 203, 247]. При проведении ГРП в наклонных скважинах, направление которых отклоняется от плоскости разрыва, возникают проблемы, связанные с образованием нескольких трещин от различных интервалов перфорации и с искривлением трещины вблизи скважины [202, 239]. Для создания единой плоской трещины в таких скважинах используется специальная технология, основанная на ограничении числа перфорационных отверстий, определении их размеров, количества и ориентации по отношению к направлениям главных напряжений в пласте. В последние годы разрабатываются технологии применения ГРП в горизонтальных скважинах [137, 195]. Ориентация трещины по отношению к оси скважины определяется направлением горизонтального ствола по отношению к азимуту минимального главного напряжения в пласте [104]. Если горизонтальный ствол параллелен направлению минимального главного напряжения, то при гидроразрыве образуются поперечные трещины. Разработаны технологии создания нескольких трещин в одной горизонтальной скважине. В этом случае количество трещин определяется с учетом технологических и экономических ограничений и обычно составляет 3-4 [119]. Первый промысловый эксперимент по созданию нескольких трещин в наклонной скважине был проведен компанией Mobil в 60-х гг. [231]. Гидроразрывы в нефтяных горизонтальных скважинах проводились на месторождениях в датской части Северного моря [110]. На газовом месторождении в Северном море (Нидерланды) в пласте с проницаемостью 0,001 мкм2 в горизонтальной скважине созданы две поперечные трещины [112]. Крупнейший проект осуществлен на газовом месторождении Золинген в Северном море (Германия), характеризующемся сверхнизкой проницаемостью (10-6-10-4 мкм2), средней пористостью 0,1-0,12 и средней толщиной пласта около 100 м. В горизонтальном стволе длиной 600 м созданы четыре поперечные трещины, полудлина каждой из которых около 100 м. Пиковый дебит скважины составил 700 тыс. м3/сут, в настоящее время скважина работает со средним дебитом 500 тыс. м3/сут [105]. Если горизонтальный участок скважины параллелен направлению 0 1 2 3 [ 4 ] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
||