Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 [ 56 ] 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

Графоаналитический метод

Этот метод расчета оптимальных параметров в конечном счете сводится к определению рациональной области применения труб различного диаметра и рабочего давления, а также к обоснованию области использования газоперекачивающих агрегатов (ГПА), выпускаемых промышленностью в данный период. С этой целью для каждого из вариантов с постоянным диаметром труб, рабочего давления, типа ГПА и степени сжатия строят графическую зависимость удельных приведенных затрат 5уд от пропускной способности газопровода Q. Удельные затраты - затраты на единицу длины и пропускной способности газопровода. При построении такой зависимости для выбранно]"о сочетания основных параметров (D, р и е), а также для определенного типа ГПА используют укрупненные нормативные технико-экономические показатели, разрабатываемые проектными институтами, в частности В НИПИтрансгазом.

Удельные приведенные затраты находят из следующего выражения; 5уд = SqI{IQ) Н- S„, JQ, где Sc - приведенные затраты на одну КС, зависящие от ее типоразмера, т. е. от типа, числа и схемы работы ГПА; 5л. ц - приведенные затраты по линейной части газопровода в расчете на единицу длины, зависящие от его диаметра и рабочего давления; / - расстояние между КС, зависящее от диаметра и рабочего давления газопровода, а также от степени сжатия КС. На рис. 5.13 приведено несколько подобных графических зависимостей уд = / (Q) для газопроводов диаметром 1020-1620 мм с рабочим давлением 5,6 МПа и двухступенчатым компримированием. Подобные графические зависимости, построенные для всех практически возможных и целесообразных сочетаний диаметра и рабочего давления газопровода и степени сжатия КС, позволяют при проектировании


(7, млрЗ. и/гад

Рис. 5.13. График рациональной области применения газопроводов различного диаметра



конкретного газопровода наметить сравнительно небольшое число конкурирующих вариагггов для Di,i6opa его экономически наивыгоднейших параметров. Мри этом конкурирующие варианты назначаются с учетом стандарта на трубы, а также типов ГПА, выпускаемых промышленностью для магистральных газопроводов. Следует отметить, что подобные графические зависимости обычно строят для каких-то средних условий строительства газопроводов без учета таких важных показателей, как сроки ввода в эксплуатацию газопровода в целом, уровень замыкающих ;)атрат на газ в районе строительства газопровода и т. д. Поэтому при проектировании конкретных газопроводов обычно используют метод сравнения конкурирующих вариантов.

Метод сравнения конкурирующих вариантов

В соответствии с этим методом и в зависимости от пропуск1юй способности газопровода намечается ряд конкурирующих вариантов по диаметру, рабочему давлению газопровода и степени сжатия КС. При этом используют известные ре!<омендации о рациональной об.яасти применения труб различного диа.метра и рабочего давления, а также различных типоразмеров КС. Применительно к газопроводам достаточно большой пропускной способности (более 5 млрд. м/год) с учетом выпускаемого промышленностью оборудования для магистральных газопроводов для сравнения следует рассматривать варианты с рабочим давлением 5,6 и 7,6 МПа, а в отношении стенени сжатия КС - схемы одно- и двухступенчатого компримироваиия. Для выбора оптимального диаметра обычно достаточно сравнить 2-3 варианта.

По каждому из намеченных вариантов проводят комплекс механических, тепловых, гидравлических и экономических расчетов для определения приведенных затрат на строительство и эксплуатацию газопровода. К строительству обычно принимается вариант с наименьшими приведенными затратами. Если какие-либо варианты оказываются по приведенным затратам примерно равноценными (разница приведенных затрат не превышает 5 %), то для выбора наивыгоднейшего варианта может быть использован дополш1тельный критерий, например величина металловложений, капитальных затрат и т. д.

Аналитический метод

При проектировании реальных газопроводов рассмотренные методы являются наиболее целесообразными и рациональными, вместе с тем при общем исследовании вопроса об оптимальных параметрах магистральных газопроводов, в частности при изучении зависимости оптимальных значений диаметра и рабочего давления газопровода и степени сжатия КС от его пропускной способрюсти, более рациональным становится аналитический метод. Хотя этот метод и является менее точным в результате использования приближенных аналитических выражений для приведенных затрат, тем не менее он позволяет получить более четкую зависимость оптимальных параметров газопровода от его пропускной способности, применяемого оборудования, материа-



лов, условий строительства и т. д. Аналитический метод позволяет обеспечить научный подход к разработке стандарта иа трубы и нормального ряда ГПА для магистральных газопроводов.

Аналитический метод расчета оптимальных параметров магистральных газопроводов предполагает использовать приближенные аналитические зависимости для приведенных затрат как функции пропускной способности газопровода, его диаметра и давления, а также степени сжатия КС. Выбор указанных аналитических зависимостей определяется требованиями достаточно точного совпадения расчетных значений экономических показателей с нормативными и необходимой простоты исследования поставленной задачи, поскольку в противном случае аналитический метод лишается всех своих преимуществ.

Исследуем сначала зависимость оптимальной степени сжатия КС от пропускной способности газопровода. Удельные приведенные затраты на КС газопровода в расчете на единицу его длины можно представить следующим образом 5уд. j,; ~ Sq/I. Величина Sc может быть достаточно точно представлена в виде

Skc =o + /.Q(e"-""-l),

где Л о - приведенные затраты на одну КС, не зависящие от ее мощности; Af - коэффициент, характеризующий приведенные затраты на одну КС, зависящие от ее мощности; т - показатель политропы. Расстояние между КС газопровода определяется из уравнения расхода

Тогда выражение удельных приведенных затрат на КС газопровода принимает следующий вид:

с IAq+AnQ (в"-""-1)1 cQ „

5уд. КС -=--JZT •

Оптимальную степень сжатия найдем, приравняв нулю частную производную от выражения удельных приведенных затрат по степени сжатия. После преобразований получаем

m-1 т-l/m m - 1 3m-l/m q 2Л

Таким образом, оптимальная степень сжатия КС газопровода не зависит от его диаметра и рабочего давления. При увеличении пропускной способности газопровода правая часть стремится к двум, поэтому степень сжатия должна стремиться к единице. Это объясняется тем, что при повышении пропускной способности газопровода уменьшается доля приведенных затрат на КС, не зависящих от ее мощности, и, наоборот, увеличиваются затраты, пропорциональные рабочей мощности КС. Последние же с понижением степени сжатия уменьшаются. Значения отношения AJAj для КС с агрегатами ГТК-Ю




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 [ 56 ] 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121



Яндекс.Метрика