Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [ 32 ] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

гидравлической системы. В п(к;тоянном сокршенствовании конструкций гидроприводов отмечаются следующие тенденции:

повып1ение рабочих давлений и связанное с этим расширение верхних температурных пределов эксплуатации рабочих жидкостей;

уменьшение обшей массы привода или увеличение отношения передаваемой мощности к массе, что обусловливает более интенсивную эксплуатацию рабочей жидкости;

уменьшение рабочих зазоров между детачями рабочего органа (выходной и приемной полостей гидросистемы), что ужесточает требования к чистоте рабочей жидкости (или ее фильтруемости при наличии фильтров в гидросистемах).

С целью удоилетворения требований, продиктованных указанными тенденциями развития гидроприводов, современные рабочие жидкости (гидравлические масла) для них должны обладать определенными характеристиками:

иметь оптимальный уровень вязкости и хорошие вязкостно-температурные свойства в широком диапазоне температур, т.е. высокий индекс вязкости;

отличаться высоким антиокислительным потенциалом, а также термической и химической стабильностью, обеспечивающими Д/Титель-ную бессменную работу жидкости в гидросистеме;

защищать детали гидропривода от коррозии;

обладать хорошей фильтруемостью;

иметь необходимые деаэрирующие, деэмульгирующие и антипен-ныс свойства;

предохранять детали гидросистемы от износа;

быть совместимыми с материалами гидросистемы.

Большинство массовых сортов гидравлических масел вырабатывают на основе хорошо очип:енных базовых масел, получаемых из рядовых нефтяных фракций с использованием современных технологических процессов экстракционной и гидрокаталитической очистки.

Физико-химические и эксплуатационные свойства современных гидрав/тических масел значительно улу1Ш1аются при введении в них функциональных присадок - антиокислительных, антикоррозионных, противоизносных, антипенных и др.

Вязкостные и низкотемпературные свойства определяют температурный диапазон эксплуатации гидросистем и оказывают решающее влияние на выходные характеристики гидропривода. При выборе

вязкости гидравлического масла важно знать тип насоса. Изготовители насоса, как правило, рекомендут для него пределы вязкости: макси.мальный, минимальный и оптимальный. Максимальная - это наибольшая вязкость, при которой насос в состоянии прокачивать масло. Она зависит от мощности насоса, диаметра и протяженности трубопровода. Минимальная - это та вязкость при рабочей температуре, при которой гидросистема работает достаточно надежно. Если вязкость уменьшается ниже допустимой, растут объемные потери (утечки) в насосе и клапанах, соответственно падает мощность и ухудшаются условия смазывания. Пониженная вязкость гидравлического масла вызывает наиболее интенсивное проявление усталостных видов изнашивания контактирующих деталей гидросистемы. Повыц1енная вязкость значительно увеличивает механические потери привода, затрудняет относительное перемещение деталей насоса и клапанов, делает невозможной работу гидросистем в условиях пониженных температур.

Вязкость масла непосредственно связана с температурой кипения масляной фракции, ее средней молекулярной массой, с групповым химическим составом и строением углеводородов. Указанными факторами определяется абсолютная вязкость масла, а также его вязкостно-температурные свойства, т.е. изменение вязкости с изменением температурьг Последнее характеризуется индексом вязкости масла.

Для улучшения вязкостно-температурных свойств применяют вязкостные (загущающие) приса.1ки - полимерные соединения. В составе товарных гидравлических масел в качестве загущающих присадок используют полиметакрилаты, полиизобутилены и продукты полимеризации винил-бутилового эфира (оинипол).

Антиокислительная и химическая стабильности характеризуют стойкость масла к окислению в процессе эксплуатации под воздействием температуры, усиленного барботажа масла воздухом при работе насоса. Окисление масла приводит к изменению его вязкости (как правило, к повышению) и к накоплению в нем продуктов окисления, образующих осадки и лаковые отложения на поверхностях деталей гидросистемы, что затрудняет ее работу.

Повышения антиокислительных свойств гидравлических масел достигают путем введения антиокислительных присадок обычно Фенольного и аминного типов.

В гидросистемах машин и механизмов присутствуют детачи из разных металлов: разных марок стали, атюминия, бронзы, которые Могут подвергаться коррозионно-химическому изнашиванию. Коррозия



металлов может быть электрохимической, возникающей обычно в присутствии волы, и химической, протекаюп1ей под воздействием химически агрессивных сред (кислых соединений, образующихся в пронессе окисления масла) и под воздействием химически-активных продуктов расщепления присадок при повышенных контактных температурах поверхностей трения. Устранению коррозии металлов способствуют вводимые в масло присадки - ингибиторы окисления, препятствующие образованию кислых соединений, и специальные антикоррозионные добавки.

Стремление к улучшению противоизносных свойств гидравлических масел вызвано включением в новые конструкции гидравлических систем интенсифицированных гидравлических насосов. Наибольшее распространение в качестве присадок, обеспечивающих достаточный уровень противоизносных свойств гидравлических масел, наибольшее распространение получили диапкиддитиофосфаты металлов (в основном цинка) или беззольные (аминные соли и сложные эфиры дитиофос-форной кислоты).

К гидравлическим маслам предъявляют достаточно жесткие требования по нейтральности их по отношению к длительно контактирующим с ними материалам. Учитывая, что рабочие температуры масла в современных гидропередачах достаточно высоки и резиновые уплотнения могут быстро разрушаться, в гидравлических маслах недопустимо высокое содержание ароматических углеводородов, проявляющих наибольшую агрессивность по отношению к резинам. Содержание ароматических углеводородов характеризуется показателем «анилиновая точка» базового масла.

При работе циркулирующих гидравлических масел недопустимо пенообразование. Оно нарушает подачу масла к узлу трения и, насыщая масло воздухом, интенсифицирует его окисление, ухудц1ая отвод тепла от рабочих поверхностей, вызывает кавитационные повреждения деталей, перегрев гидропривода и его повышенный износ. Для обеспечения хороших антипенных свойств масла преимущественное значение имеет полнота удаления из базового масла поверхностно-активных смолистых веществ. Чтобы предотвратить образование пены или ускорить ее разрушение, в масло вводят антипенную присадку (например, полиметилсилоксан), которая снижает поверхностное натяжение на границе раздела жидкости и воздуха, что приводит к ускоренному разрушению пузырьков пены.

В составе гидравлических масел крайне нежелательно наличие механических примесей и воды. Вследствие весьма малых зазоров рабочих пар гидросистем (особенно, оснащенных аксиально-поршневыми механизмами) наличие загрязнений может привести не только к износу элементов гидрооборудования, но и к заклиниванию деталей. Для очистки рабочей жидкости от загрязнений в гидросистемах применяют фильтры различных типов. Даже незначительное количество (0,05-0,1 %) воды отрицательно влияет на работу гидросистем. Вода, попадающая в гидросистему с маслом или в процессе эксплуатации, ускоряет npoiiecc окисления масла, вызывает гидролиз гидролитически неустойчивых компонентов масла (в частности, присадок - солей металлов). Продукты гидролиза присадок вызывают электрохимическую коррозию металлов гидросистемы. Вода способствует образованию шлама неорганического и органического происхождения, который забивает фильтр и зазоры оборудования, тем самым нарушая работу гидросистемы.

К некоторым маслам предъявляют специфические, дополнительные требования. Так, масла, загущенные полимерными присадками, должны обладать достаточно высокой стойкостью к механической и термической деструкции; для масел, эксплуатируемых в гидросистемах речной и морской техники, особенно важна влагостойкость присадок и малая эмульгируемооть.

В некоторых специфических областях применения, таких, как горнодобывающая и сталелитейная про.мышленности, в отдельную группу выделились огнестойкие рабочие жидкости на водной основе (эмульсии «масло в воде», «вода в масле», водно-гликолевые смеси и др.) и жидкости, не содержащие воды (сложные эфиры фосфорной кислоты, олигоорганосилоксаны, фторированные углеводороды и др.).

Система обозначения гидравлических масел

Принятая в мире классификация минеральных гидравлических масел основана на их вязкости и наличии присадок, обеспечивающих необходимый уровень эксплуатационных свойств.

В соответствии с ГОСТ 17479.3-85 («Масла гидравлические. Классификация и обозначение») обозначение отечественных гидравлических масел состоит из групп знаков, первая из которых обозначается буквами «МГ» (минеральное гидравлическое), вторая - цифрами и характеризует класс кинематической вязкости, третья - буквами и Указывает на принадлежность масла к группе по эксплуатационным свойствам.

и -1890




4.11. Классы вязкости гидравлических масел

Класс вязкости

Кинематическая вязкость при 40 С, mmVc

Класс вязкости

Кинематическая вязкость при 40 С, мм=/с

4,14-5,06

28,80-35,20

6,12-7,48

41,40-50,60

9,00-11,00

61,20-74,80

13,50-16,50

90,00-110,00

19,80-24,20

135,00- 165,00

По ГОСТ 17479.3-85 (аналогично международному стандарту ISO 3448) гидравлические масла по значению вязкости при 40 °С делятся на 10 классов (табл. 4.11).

В зависимости от эксплуатационных свойств и состава (наличия соответствующих функциональных присадок) гидравлические масла делят на группы А, Б и В.

Группа А (группа НН по ISO) - нефтяные масла без присадок, применяемые в малонагруженных гидросистемах с шестеренными или поршневыми насосами, работающими при давлении до 15 МПа и максимальной температуре масла в объеме до 80 °С.

Группа Б (группа HL по ISO) - масла с антиокислительными и антикоррозионными присадками. Предназначены для средненапря-женных гидросистем с различными насоса.ми, работающими при давлениях до 2,5 МПа и температуре масла в объеме свыше 80 °С.

Группа В (группа НМ по ISO) - хорошо очищенные масла с антиокислительными, антикоррозионными и противоизносными присадками. Предназначены Д/1Я гидросистем, работающих при даапении свыше 25 МПа и температуре масла в объеме свыше 90 °С.

В масла всех указанных групп Moiyr быть введены загущающие (вязкостные) и антипенные присадки.

Загущенные вязкостными полимерными присадками гидравлические масла соответствуют группе HV по ISO 6743/4.

В табл. 4.12 приведено обозначение гидравлических масел существующего ассортимента в соответстствии с классификацией по ГОСТ 17479.3-85.

В табл. 4.12 кроме чисто гидравлических масел включены масла марок «А», «Р», МГТ, отнесенные к категории трансмиссионных масел для гидромеханических передач. Однако благодаря высокому индексу вязкости, хорошим низкотемпературным и эксплуатационным

4.12. Обозначение товарных гидравлических масел

Обозначение масла по гост 17479.3-85

МГ-5-Б МГ-7-Б МГ-10-Б МГ-15-Б МГ-15-В МГ-22-А МГ-22-Б

Товарная марка

МГЕ-4А, ЛЗ-МГ-2 МГ-7-Б, РМ МГ-10-Б, РМЦ

АМГ-10 МГЕ-ЮА, ВМГЗ АУ АУП

Обозначение маспа по гост 17479.3-85

МГ-22-В МГ-32-А МГ-32-В МГ-46-В МГ-68-В МГ-ЮО-Б

Товарная марка

„р.,

•А", МГТ МГЕ-46В МГ-8А-(М8-А) ГЖД-Ис

свойствам и из-за отсутствия гидравлических масел такого уровня вязкости они также используются в гидрообъемных передачах и гидросистемах навесного оборудования наземной техники.

Некоторые давно разработанные и выпускаемые гидравлические масла по значению вязкости нестрого соответствуют классу по классификации, обозначенной ГОСТ 17479.3-85, а занимают промежуточное положение. Например, масло ГТ-50, имею1цее вязкость при 40 °С 17-18 ММ-/С, находится в ряду классификации между 15 и 22 классами вязкости.

По вязкостным свойствам гидравлические масла условно делятся на следующие:

маловязкие - классы вязкости с 5 по 15;

средневязкие - классы вязкости 22 и 32;

вязкие - классы вязкости с 46 по 150.

Ассортимент гидравлических масел

Маловязкие гидравлические масла (табл. 4.13 и 4.14)

Масло гидравлическое МГЕ-4А (ОСТ 38 01281-82) - глубо-коочищенная легкая фракция, получаемая гидрокрекингом из смеси Парафинистых нефтей, загущенная вязкостной присадкой. Содержит ингибиторы окисления и коррозии. Обладает исктючительно хорошими низкотемпературными свойствами.

Масло МГЕ-ЮА (ОСТ 38 01281-82) - глубокодеароматизиро-ванная низкозастывающая фракция, получаемая из продуктов гидрокрекинга смеси парафинистых нефтей. Содержит загун1ающую, аити-окислительную, антикоррозионную и противоизносную присалки. Масло предназначено для работы в диапазоне температур от -(60-65) до +(70-75) °С.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [ 32 ] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97



Яндекс.Метрика