Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 [ 126 ] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

ТАБЛИЦА 29.1

РЕЖИМЫ ДУГОВОЙ СВАРКИ СВИНЦА УГОЛЬНЫМ ЭЛЕКТРОДОМ

Толщина, мм

Диаметр электрода, мм

Ток, А

Длина дуги, мм

6-12

25-40

5-10

10-15

40-65

10-12

15-20

65-95

8-12

15-30

15-20

95-100

8-12

Режимы дуговой сварки свинца угольным электродом характеризуются малыми сварочными токами - не выше 100 А из-за возможной резки при более высоких токах и напряжении на дуге 10-12 В.

Ориентировочные режимы дуговой сварки свинца угольным электродом приведены в табл. 29.1.

Для механизации сварочных работ рекомендуется использовать дуговую сварку неплавящимся электродом в среде инертных газов. Сварку свинца малых толщин (до 3 мм) во всех пространственных положениях выполняют короткой дугой на постоянном токе прямой полярности в среде аргона.

29.4.4. Импульсно-дуговая сварка

Импульсно-дуговая сварка осуществляется точками, поэтому большое влияние на проплавляющую способность дуги оказывает величина шага точек: при толщине свариваемых листов 3 мм рекомендуется шаг 2,5-3,5 мм, при 5 мм - 1,5-2,5 мм. При большем шаге снижается величина провара. Для обеспечения максимальной проплавляющей способности дуги форма импульса тока должна приближаться к прямоугольной.

29.4.5. Холодная сварка свинца

Холодная сварка свинца используется для малых толщин-до 2-2,5 мм [2]. Минимальная величина деформации при этом составляет 84%- Холодная сварка сдвигом позволяет снизить величину деформации до 50 % [Ю]. Скорость нагружения мало влияет на деформируемость и прочность сварных соединений из свинца. Прочность сварных соединений составляет ав = 29-ь -f-49 МПа и близка к прочности основного металла, на уровне основного металла находятся электропроводность и другие свойства.

Свинец можно сваривать взрывом,



г л а в а 30. СЕРЕБРО И ЕГО СПЛАВЫ

(Фролов в. В., Ермолаева В. И.)

30,1. Физико-химические свойства серебра

Серебро - химический элемент I В группы Периодической системы Д. И. Менделеева с порядковым номером 47 и атомной массой 107,88. Серебро кристаллизуется в кубической гранецентрироваиной решетке, полиморфных превращений не испытывает. Серебро обладает наибольшими среди металлов электрической проводимостью, теплопроводностью и отражательной способностью.

Основные физико-химические и механические свойства серебра приведены ниже:

Плотность, кг/м* .................. 1049

Температурный коэффициент линейного расширения,

108, град-1..................... 19

Коэффициент теплопроводности, Bt-cm~1град"* .... 4,18

Удельная теплоемкость, кДж/кг-град.........0,235

Удельное электрическое сопротивление, мкОм-см ... 1,59

Температура плавления, °С ............. 960,5

Предел прочности прн растяжении, МПа ....... 180

Предел текучести, МПа ............... 30

Относительное удлинение, % ............ 50

Серебро не растворяется в соляной н серной разбавленной кислотах, хорошо растворяется в азотной кислоте, смеси азотной и соляной кислот, в горячей концентрированной серной кислоте, со щелочами не взаимодействует, оксиды серебра малоустойчивы. Потемнение серебра связано с образованием на его поверхности во влажном воздухе, содержащем сернистые соединения, пленки сульфида Ag2S. Поэтому использовать серебро и его сплавы в среде, содержащей сероводород, влажный сернистый газ, а также в контакте с резиной и эбонитом нельзя. Серебро используется в приборостроении в основном для изготовления контактов, в химической промышленности для изготовления сварных конструкций, работающих в особо агрессивных условиях, в криогенной технике, в ювелирной промышленности.

Различные примеси даже в небольших количествах значительно понижают проводимость серебра. Серебро подвержено эрозии и имеет низкие параметры дуги по сравнению с другими металлами, хорошо поддается всем видам пластической обработки, сваривается и паяется.

Серебро выпускается двух марок: Ср99Э,Э и Ср9Э9 (ГОСТ 6836-80), содержание серебра в которых составляет 99,99 % и 99,9 % соответственно. Основные примеси: РЬ, Fe, Sb, Bi.

30.2. Основные марки, структура и механические свойства

Серебро образует непрерывный ряд твердых растворов с золотом и палладием, сплавы которых имеют широкое применение

В системе серебро - золото прн средних концентрациях компонентов удельное сопротивление, теплопроводность, пластичность максимальны, механическая прочность низкая, тсорознонная стойкость большая. Золотосе-ребряные сплавы упрочняют медью, они имеют маркировку ЗлСрМ9Э0-5, ЗлСрМЭ80-15 и т. д. (ГОСТ 6835-80), где первая цифра указывает содержание золота, вторая - серебра. В сплаве ЗлСрМ990-5 золота содержится 99,0%, серебра 0,5%, остальное - медь. Сплавы этой системы содержат Ag от 0,5 до 33 % (по массе).



Сплавы системы Ag -Pd выпускают двух марок: СрПд20 и СрПд40 с содержанием серебра 80 и 60 % соответственно Они обладают свойствами, аналогичными свойствам золотосеребряных сплавов.

Ag -Pd - Cu сплав СрПдМЗО-20 (ГОСТ 6836-80) содержит 50% Ag, 20 % Си, 30 % Pd.

Сплавы Ag-Pt образуют диаграмму состояния перитектического тнпа с ограниченной растворимостью компонентов. Сплавы с содержанием Pt 10-45 % (по массе) могут подвергаться старению. Термической обработкой этих сплавов можно достигнуть высокой твердости и прочности: до 3600 МПа после закалки при 1000°С и старении при 550 "С.

Сплавы Ag -Си образуют диаграмму состояния эвтектического типа с областями ограниченной растворимости. Старение может значительно повысить механические свойства сплавов,. Медь увеличивает твердость и понижает эрозию серебра особенно в области эвтектических сплавов, но ухудшает коррозионные свойства

30.3. Свариваемость серебра и его сплавов

Сварка серебра и его сплавов затруднена из-за большой теплопроводности, что требует применения концентрированных источников тепла, применения предварительного подогрева до 500-600 °С. Высокий коэффициент теплового расширения может приводить к появлению значительных напряжений и деформации изделий. Жидкое серебро хорошо растворяет кислород, при кристаллизации металла возможно образование эвтектики Ag20-Ag с температурой плавления 507 °С, выделение которой охрупчивает металл, а также возможно образование пор. При плавлении и сварке серебро интенсивно испаряется. Содержащиеся в сплавах серебра примеси А1, Си, Si, Cd могут окисляться при сварке, что будет приводить к потере пластичности сплава. Из-за большой жидкотекучести сварку серебра и его сплавов рекомендуется выполнять в нижнем или слегка наклонном положении.

30.4. Технология сварки серебра и его сплавов

Для сварки серебра и его сплавов применяют газовую сварку, аргонодуговую сварку неплавящимся электродом, используют кузнечную сварку.

При газовой сварке используют метанокислородное и ацети-ленокислородное нормальное пламя, а также присадочную проволоку, раскисленную алюминием, и флюс, приготовленный на этиловом спирте из равных количеств буры и борной кислоты. Флюс наносят на соединяемые кромки или присадочную проволоку. Мощность пламени, л/ч: W=(100-150)s, где s - толщина свариваемого металла, мм [5]. Применяют «левый» способ сварки, при этом расстояние от ядра пламени до поверхности сварочной ванны должно быть 3-4 мм. Горелку располагают перпендикулярно или слегка наклонно к свариваемой поверхности. Нагрев осуществляют с максимально возможной ско-




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 [ 126 ] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170



Яндекс.Метрика