Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 [ 1 ] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

Сама же нефтяная фаза не определяет в общем случае исключительного заполнения норового пространства коллектора углеводородной жидкостью.

Все образцы нефтеносных коллекторов, извлеченные на поверхность до разработки месторождения и подвергнутые анализу, показали содержание некоторого количества воды в жидкости, полученной из керна, и, очевидно, присущей породе коллектора. Количество этой воды, обычно называемой «погребенной» или «связанной», составляет от 2 до 50% норового пространства нефтяных коллекторов. Погребенную воду можно рассматривать как связанную повсеместно с самой нефтью 2. Кроме того, все продуктивные нефтяные подземные зезервуары содержат в нефти газ в растворенном состоянии. Во многих резервуарах общее содержание газа превышает то количество, которое можно удержать в равновесном растворенном состоянии при начальном пластовом давлении и температуре; излишнее количество газа обычно залегает над нефте-насыщенной зоной пласта и образует «газовую шапку» . Таким образом, общее содержимое нефтяного резервуара первоначально являет собой комплекс по крайней мере двух, а чаще всего трех фаз: нефти, воды и газа.

Все эти три фазы должны рассматриваться как составные части одной и той же системы. Благодаря постоянному взаимодействию воды, нефти и газа в системе подземного резервуара и реакции их по отношению ко всякому поступлению аналогичных жидкостей извне создается присущая разрабатываемым нефтяным резервуарам комплексность. Изучение этого комплекса и его закономерностей составляет предмет науки о технологии нефтедобычи.

1.3. Характеристика нефтеносных пород. Здесь не рассматриваются геохимические вопросы, относящиеся к происхождению нефти; не затрагивается также и проблема миграции и аккумуляции нефти, продолжающая оставаться противоречивой. Рас-

1 В конденсатных подземных резервуарах углеводородное содержимое норового пространства первоначально находится, как правило, в паровой фазе, извлекаемой на дневную поверхность при эксплуатации в виде газа и жидкого нефтяного конденсата.

2 Когда скопления нефти заключены в естественных трещинах или кавернах, то, возможно, могут встретиться и исключения из этого правила.

3 При всех аналитических обработках физических явлений в нефтяном резервуаре принимается, что, за исключением переходной зоны между областью нефтенасыщения и газовой шапкой в пласте, не существует фазы свободного газа, первоначально распределенной в основной массе нефти, находящейся в разрабатываемой части резервуара. При условии полного термодинамического равновесия следует ожидать выделения и накопления свободного газа в виде непрерывной фазы. Повидимому, принятое допущение не имеет доказательства, могущего его опровергнуть. Существование «положительного» доказательства полноценности этого допущения остается под вопросом.



смотрению подлежат песчаники, известняки и доломиты, которые образуют нефтеносные коллекторы - резервуары.

Эти породы являются осадочными К Они состоят из механических или химических отложений твердых материалов или просто из остатков животной или растительной жизни. Для того чтобы осадочные породы могли служить нефтяными коллекторами, они должны обладать промежутками между твердыми частицами или пустотами, где может скопиться нефть. Объем породы, который является свободным для вмещения в нее жидкости, определяется величиной ее пористости.

Пористые осадочные породы представляют собой промежуточную стадию в комплексе последовательного цикла осадкообразования: отложение, окаменение, метаморфизм и выветривание или разрушение. За исключением несцементированных песков, которые образуют некоторые из подземных нефтяных резервуаров побережья Залива в США, Калифорнии, района озера Маракаибо в Западной Венецуэле и т. д., все остальные нефтяные коллекторы представлены сцементированными разностями, образовавшимися в процессе окаменения. Если только эти породы не подверглись преждевременному выветриванию, в конечном итоге они проходят полный метаморфизм и их не следует далее рассматривать как осадочные образования, ибо они полностью кристаллизуются и теряют свою пористость. В частности, сланцы превращаются в шифер, известняки - в мрамор, чистые песчаники становятся кварцитами, а мергели и глинистые песчаники превращаются в слоистые кристаллические сланцы и гнейсы.

Породы, образующиеся в результате механического отложения, состоят из обломочных осадков и содержат гравий, песчаник, мергель, глину и т. д. Они представляют собой гранулярные скопления, состоящие из обломков эрозии более старых и более мощных горных пород. Глины и мергели, являющиеся осадочными отложениями из очень тонкого обломочного мате-эиала, не имеют промышленной ценности как нефтяные коллекторы, несмотря на то, что они часто насыщены нефтью и составляют около 80% всех осадочных горных пород земной коры. Объясняется это следующим: свежий ил и отложения глины могут обладать пористостью, достигающей 85%, а поверхностные глины часто имеют пористость в пределах 40-45%, но они весьма чувствительны к сжимающему действию залегающих сверху пород. В результате усадки эти материалы на значительных глубинах теряют большую часть своей пористости, а отсюда - свою эффективную емкость для удержания углеводородных жидкостей. Из опыта было найдено, что пористость глин уменьшается экспоненциально с глубиной залегания. Кроме того.

Следует заметить, что все нефтесодержащие породы фактически являются осадочными, однако не все осадочные образования содержат нефть. Кроме того, только 5% всей литосферы представлено осадочными породами.



благодаря очень малым размерам первоначальных зерен, образующих глины или мергели, промежуточные отверстия пор, оставшиеся после усадки от сжатия, настолько ничтожны, что если жидкости и останутся в порах, они будут иметь крайне малую подвижность. Вследствие этого жидкости из глин почти не текут в открытые стволы скважин.

В противоположность глинам и мергелям пески, песчаники и песчанистые глины, отложившиеся под водой, состоят из значительно более крупных обломков или зерен; кроме того, они слегка сжаты и уплотнены массой налегающей сверху воды. Так, типичный нефтеносный песок отложится под водой, сохранив пористость порядка 35-40%. Приложение уплотняющего давления уменьшит значение пористости весьма незначительно, порядка нескольких процентов, если только не превзойдено разрушающее напряжение песчаных зерен или цементирующего материала. Разница в пористости между песчаниками на больших глубинах и произвольно выбранной набивкой составляющих этот песчаник зерен песка, когда он извлечен на поверхность, всецело обязана присутствию цементирующего материала, например, гипса, кальцита, лимонита, гематита или кварца, отложившихся в первоначальных порах среды циркулирующими водами. Количество цементирующего вещества и связанное с ним уменьшение пористости будут зависеть в основном от геологической истории отложения.

Песчаники составляют около 15% всех осадочных компонентов литосферы. Песчаники, которые образуют нефтяные подземные резервуары промышленной ценности, обычно имеют пористость в пределах от 10 до 35%.

Практически все песчаники обладают плоскостями напластования (слоистостью). Последние являются следствием сортировки зернистого материала в процессе его переноса и отложения. Отложение обломочного материала в одном и том же направлении может привести к неоднородности транспортируемой массы горной породы в результате неодинаковой подъемной силы воды. Поэтому чередующиеся осадки обычно разделены между собой полосами глины, мергеля или слюдами.

Помимо самого цементирующего или связывающего материала песчаники могут различаться между собой по количеству и природе твердого вещества, присутствующего в порах, образованных зернами песчаной структуры. Некоторые из мощных нефтеносных песчаниковых образований, например, пласт Вилькокс в Оклахоме или Вудбайн в Тексасе, представлены «чистыми песками», где поровое пространство б основном свободно от твердых цементирующих материалов. Однако в некоторых нефтедобывающих районах, например, в Калифорнии и Северо-западной Пенсильвании, большая часть нефтеносных коллекторов является в той или иной степени заиленной. В этих песках поровое пространство частично заполнено аргиллитами, илом, лигнитом или бентонитовым материалом. Присутствие




0 [ 1 ] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200



Яндекс.Метрика