Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 [ 117 ] 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

для закачки оборудования и коллекторскими свойствами пласта. При обработке скважины сухим газом они практически не зависят от термобарических условий пласта, составов пластовой смеси и нагнетаемого сухого газа (поскольку процесс не требует поддержания условий полного смешивания пластовой системы и нагнетаемого газа). Поэтому, например, при использовании для закачки газа компрессора давление и расход могут ограничиваться предельными значениями этих параметров, предусмотренными техническими возможностями компрессора. В этом случае при обработке низкопроницаемых коллекторов возможно ограничение темпов нагнетания из-за необходимости поддержания значительных репрессий на пласт (а следовательно, и давления нагнетания, близкого к предельному давлению на выходе компрессора). При обработке высокопроницаемых пластов расход нагнетаемого газа может ограничиваться величиной максимального расхода компрессора (давление нагнетания в этом случае будет определяться "поглощающими" возможностями пласта).

В случае обработки скважины жидкими углеводородными растворителями давление нагнетания должно обеспечивать полную смешиваемость нагнетаемых рабочих агентов и пластовой смеси.

Схема обвязки скважин

Обработка газоконденсатных скважин растворителями не требует внесения существенных изменений в устьевое оборудование скважин и схему обвязки скважин. Нагнетание растворителя, в зависимости от конкретных условий эксплуатации скважин и их технического состояния, может производиться как по затрубью, так и по лифтовой колонне труб. В случае обработки скважин сухим газом дополнительно к скважине подключается линия от источника газа высокого давления (компрессор, линия высоконапорного газа и т.д.).

Последовательность операций при обработке призабойных зон скважин

Обработка призабойных зон скважин в зависимости от условий эксплуатации скважин может включать в себя выполнение различных операций и подготовительные работы. Основной комплекс операций по обработке включает следующее.

1. Подключение к скважине источника газа высокого давления (в частности, передвижного компрессора или линии сухого газа высокого давления), а также емкости с жидкими углеводородными растворителями и нагнетающими ее агрегатами (как правило, в одной линии с источником газа высокого давления).

2. Закрытие скважины путем перекрытия ее шлейфов (порядок выполнения операций в пунктах 1 и 2 может меняться в зависимости от условий газового промысла).

3. Нагнетание требуемого объема растворителей при заданных расходах и давлениях.

4. Отключение от скважины агрегатов высокого давления и емкостей с растворителями.

5. Выдержка скважины после обработки в течение определенного времени для усиления процесса частичного испарения в нагнетаемый газ



промежуточных и тяжелых компонентов из пластовой жидкости. Время остановки скважины после ее обработки может составлять несколько суток и уменьшается для скважин, нагнетание газа в которые производилось малыми темпами.

6. Пуск скважины в эксплуатацию с малыми дебитами (на уровне 30 - 50 % от их величины до обработки). Продолжительность периода эксплуатации скважин с такими дебитами составляет несколько суток. Тем самым обеспечивается равновесие в призабойной зоне пласта газовой и жидкой фазы и исключается образование "вала" вторичного конденсата в ней.

7. Установка рабочих дебитов, соответствующих намеченным технологическим режимам.

3.4.5

Глубокая газовая репрессия на призабойную зону скважин

в качестве одного из направлений дальнейшего совершенствования обработки газоконденсатных скважин сухим газом можно рассмотреть метод глубокой газовой репрессии. Он заключается в воздействии на призабойную зону скважин закачкой сухого газа в сочетании с одним из способов интенсификации добычи, основанным на улучшении значений абсолютной проницаемости коллектора у забоя скважины. Эффективность предлагаемого метода глубокой газовой репрессии исследовали путем математического моделирования процесса эксплуатации газоконденсатной скважины при применении этого метода воздействия. Расчеты выполнялись для различных вариантов воздействия, различающихся размерами зоны повышенной проницаемости и соотношением проницаемостей коллектора в этой зоне и в пласте, объемами нагнетания сухого газа, а также значениями текущего пластового давления, при котором производится воздействие. Основные исходные данные по вариантам расчета представлены в табл. 3.8. В расчетах использовалась модельная газоконденсатная смесь № 1 (см. табл. 3.3 - 3.4). Рассматривалось воздействие при давлении 20 МПа. Таким образом, выбирались условия, не совсем благоприятные для обработки газоконденсатной скважины газом, поскольку пластовое давление оказывалось довольно близким по значению к давлению максимальной конденсации газоконденсатной смеси. Объемы нагнетаемого сухого газа задавали с учетом того, что параметр 0/{mh) = 20 - 25 тыс. м/м, где О - объем нагнетаемого газа в атмосферных условиях; т и h - пористость и толщина пласта.

В варианте IP рассматривалась обычная обработка призабойной зоны скважин сухим газом без осуществления мероприятий по улучшению коллекторских свойств пласта. В вариантах 2Р -5Р изучалась эффективность глубокой газовой репрессии при создании у забоя скважины зоны с повышенной проницаемостью коллектора радиусом от 3 до 15 м и соотношением проницаемостей, равным 20 (коэффициенты проницаемости коллектора у забоя скважины и в пласте 0,6 и 0,03 мкм). Предполагалось, что мероприятия по улучшению фильтрационных характеристик коллектора в этих вариантах приводили к увеличению проницаемости коллектора по всей толщине пласта и не вызывали существенного изменения пористости



Таблица 3.8

Основные исходные параметры расчета вариантов глубокой газовой репрессии

Номер варианта

Коэффициент проницаемости пласта,

10- м

Коэффициент проницаемости зоны (элемента) с улучшенными свойствами, 10- м

Коэффициент пористости пласта, %

Доля (по толщине пласта) высокопроницаемой части коллектора, %

Радиус зоны (элемента) с улучшенными свойствами, м

10,0

15,0

3000

3000

3000

10,0

3000

15,0

3000

3000

3000

10,0

3000

15,0

коллектора в обратной зоне (коэффициент пористости коллектора задавался равным 15 % по всему пласту). Таким образом, рассматривалось воздействие, близкое к соляно-кислотной обработке призабойной зоны (в том числе и массированной СКО в вариантах с радиусом зоны обработки 10-15 м). В вариантах 6Р -9Р изучались особенности глубокой газовой репрессии при осуществлении закачки газа в скважину, вокруг которой создана зона с проницаемостью коллектора в 100 раз более высокой, чем в остальной части пласта, и однородная по своим фильтрационно-емкостным свойствам.

В вариантах ЮР -13Р рассмативалось увеличение общей проницаемости коллектора у забоя скважины за счет создания в середине пласта тонкого высокопроницаемого элемента круглой формы конечного радиуса. Этим элементом моделировалась горизонтальная трещина разрыва или система трещин. При решении задачи конечно-разностными методами сам элемент аппроксимировался системой блоков разностной сетки размерностью 1 X N, где N - число блоков по длине высокопроницаемого элемента. Толщина высокопроницаемого элемента составляла 7 % от общей толщины пласта, а проницаемость - 3 мкм при проницаемости коллектора в остальной части пласта 0,03 мкм. Простой пересчет показывает, что эти данные соответствуют, например, созданию в пласте с проницаемостью 0,03 мкм трещины толщиной 2 - 5 мм с проницаемостью 600 - 1500 мкм1

Таким образом, расчетные варианты формировали исходя из необходимости оценки влияния на показатели глубокой газовой репрессии не только параметров зоны улучшенных фильтрационных свойств коллектора, но и характера проводимых мероприятий по интенсификации притока газа. Основные результаты расчетов по вариантам представлены на рис. 3.62 - 3.64. Для некоторых из вариантов расчета показаны профили насыщенности коллектора жидкостью в призабойной зоне скважины до и после обработки ее газом, а также динамика коэффициента продуктивности скважины (соотношение дебита скважины по газу и депрессии) после воздействия на нее.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 [ 117 ] 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217



Яндекс.Метрика