Главная Переработка нефти и газа массовая доля), то в жидкой углеводородной фазе коллектора количество парафинов может быть в несколько раз больше. Опасность массовой кристаллизации парафинов многократно возрастает для призабойных зон эксплуатационных скважин, поскольку таким участкам коллектора присуще резкое уменьшение площади фильтрации и при выпадении равных количеств твердых углеводородов в удаленном от скважин фрагменте коллектора, и в окрестности скважины доля блокируемого сечения пористой среды в указанной зоне резко возрастает. Накопление высокомолекулярных соединений возможно в призабойной зоне в результате работы при высоких депрессиях, как это отмечалось для Карачаганакского НГКМ. Из анализа литературных источников по химии нефти следует, что доминирующим фактором, влияющим на фазовое состояние парафинов, является температура. Исходя из того, что при температуре выше 40 - 50 °С парафин растворяется в нефти или смеси нефти и газоконденсата неограниченно, а ЗСГКМ характеризуется относительно высокими пластовыми температурами, можно предположить, что опасность массовой кристаллизации С,7+ в пласте-коллекторе невелика. Тем не менее ухудшение продуктивных характеристик скважин может наступать из-за пониженной подвижности пластовой жидкости вследствие значительного содержания в ней парафинов. Эксперименты, проведенные применительно к условиям ЗСГКМ, показали значительное влияние парафинов, имеющихся в газоконденсатной смеси, которое выражается в ухудшении фильтрационно-емкостных свойств пористой среды независимо от того, в какой фазе находятся эти углеводороды. Выпадение в пласте жидких углеводородов, содержащих растворенные парафины, приводит к нарушению линейного закона фильтрации и появлению предельного градиента давления, что может приводить к полной остановке скважины. На Западно-Соплесском месторождении отмечается зависимость между повышенным содержанием парафина в продукции скважин и пониженными коллекторскими свойствами пласта, то есть чем ниже проницаемость участка пласта, тем больше осложнений может быть вызвано явлениями, сопутствующими повышенной парафино-насыщенности пластовой смеси. Наиболее информативным параметром, который характеризует близость или удаленность состояния от критического (в фильтрационных критериях), является подвижность системы. Исходя из этого, в качестве объекта изучения мы выбрали "фильтрационную" вязкость пластовых флюидов Западно-Соплесского ГКМ - физический параметр, рассчитываемый из формулы закона Дарси в предположении, что в конкретных условиях опыта эта формула справедлива. В случае, когда в пористой среде происходит фильтрация флюида, обладающего в определенных условиях неньютоновскими свойствами, фильтрационную вязкость и параметр проводимости А/рф экспериментально можно определить с точностью до некоторых коэффициентов, которые определяют степень отклонения данной системы от течения жидкости, подчиняющегося закону Ньютона. Газовый конденсат и нефть Западно-Соплесского ГКМ, имеющие в своем составе высококипящие углеводороды, в определенных термобарических условиях, очевидно, могут проявлять неньютоновские свойства, когда отсутствует прямая пропорциональность между скоростью деформации и напряжением сдвига. Следовательно, экспериментально определенные величины фильтрационной вязкости и параметра проводимости являются функциями степени отклонения системы от ньютоновской: рГ = °и•Ф (1.1) (1.2) где Рф и /с/рф - фильтрационная вязкость и параметр проводимости для ньютоновской системы; и а - коэффициенты, определяющие степень отклонения системы от ньютоновской. Для проведения исследований была разработана методика, спроектирована и построена портативная экспериментальная установка. Установка (рис. 1.12) рассчитана на рабочие давления до 60 МПа и температуры до 100 °С. Основной частью установки является сменная насыпная измерительная модель пласта внутренним диаметром 0,4 см и длиной 100 см, расположенная в термостатируемом блоке. Корпусом модели служит трубка из нержавеющей стали, пористой средой - фракция кварцевого песка с размерами зерен 0,06 -0,50 мм. Конструкция установки предусматривает оперативную смену моделей с различающимися коллек-торскими свойствами. Песок предварительно тщательно промывали раствором соляной кислоты и дистиллированной водой с целью удаления глинистых частиц и органики. Такая операция выполнялась с целью получения гарантии, что равновесие в системе жидкость - порода не смещается под влиянием глинистых частиц в сторону твердой фазы. В качестве термостата при монтаже установки использован блок распространенного хроматографа ЛХМ-8МД, что обеспечило портативность 12 11 10 9 0 00/ ф Рис. 1.12. Схема экспериментальной установки: I - контейнер-поджнмка; 2 - пробоотборннк с конденсатом; 3 - пресс измерительный; 4 - сосуд PVT-соотношеннй; 5 - измерительная модель пласта; б - термостат; 7 - сепаратор низкого давления; 8 - счетчик газовый; 9 - вентиль точной регулировки; 10 - манометр образцовый; 11 - дифманометр; 12 - вентиль игольчатый основного узла аппарата. Чтобы в этой термостатической камере разместить измерительную модель пласта, последнюю навивали на стандартный фиксирующий цилиндрический каркас для хроматографических колонок. Перепад давления на модели пласта фиксировали дифференциальным манометром типа ДМ-3577 со вторичным прибором. При превышении перепада давления 0,4 МПа предусматривалась возможность контроля перепада по образцовым манометрам, которыми были оборудованы вход и выход измерительной модели пласта. На основании результатов предварительной серии экспериментов с использованием дифманометра ДМ-3577 в качестве охранного элемента гидравлической части прибора, предотвращающего попадание флюида в дифманометр, установили разделительный дрип емкостью 50 см, заполненный толуолом. Рекомбинированные пробы сырого западно-соплесского конденсата готовили в сосуде PVT-соотношений данной установки. При помощи измерительного электропресса ИП-6 в сосуд подавали стабильный конденсат в количестве, рассчитанном при рабочем давлении загрузки 20 МПа. После этого в сосуд PVT подавалась равновесная газовая фаза при постоянном перемешивании магнитной мешалкой и постоянной температуре опыта 90 °С. После выдержки во времени давление доводили до величины, принимаемой за базовую в конкретной серии опытов. Методика экспериментальных исследований заключалась в следующем. После проведения подготовительных операций, предусматривающих промывку модели пласта набором углеводородных растворителей и продувку сухим газом (метаном) с целью регенерации свойств пористой среды, проводили загрузку сосуда PVT-соотношений 4 (см. рис. 1.12) рабочим флюидом. Затем сосуд разогревали до температуры эксперимента (90 °С) и выдерживали для равномерного прогрева и установления термодинамического равновесия в течение четырех часов. Для загрузки использовали следующее оборудование: измерительный пресс ИП-6 3 с пробоотборником 2, а также поршневой контейнер-поджимку /, необходимый для подачи в сосуд PVT или модель пласта сжатых углеводородных газов. Окончив этот этап подготовки исходных условий опыта, начинали основную часть эксперимента по определению фильтрационной вязкости и параметра проводимости. Для этого из сосуда PVT-соотношений через разогретую в термостате б до рабочей температуры модель пласта проводили фильтрацию исследуемой системы. Перепад давления, измеряемый дифференциальным манометром задавали игольчатым вентилем точной регулировки 9. Далее смесь, вышедшая из модели пласта, поступала в жидкостный сепаратор низкого давления 7, где система разделялась на жидкую и газовую фазы. Здесь проводили точный замер количества жидкости. Объем газовой фазы измеряли с помощью газового счетчика барабанного типа ГСБ-400 8. Данные, полученные после достижения стационарного режима фильтрации (заданный перепад давления и скорости фаз постоянны), который поддерживался в течение четырех часов, использовались для расчета фильтрационной вязкости и параметра проводимости по формуле Дарси. На следующем этапе устанавливали другую величину перепада давления, после чего операции и расчеты повторяли. Таким образом, после нескольких опытов по стационарной фильтрации исследователи располагали информацией о зависимости расчетных параметров от перепада давления, 0 1 2 3 4 5 6 7 [ 8 ] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
||