Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [ 32 ] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

отобрано 73,34 % начальных запасов газа, в том числе из взаимодействующих Бабченского, Битковского, Пасечнянского, Любижнянского и Юго-Западного блоков -74,12 % начальных запасов газа в зтих блоках. В результате анализа данных по обводнению месторождения получены следующие значения высоты подъема газоводяного контакта в отдельных блоках: Баб-ченский - 149 м, Битковский - 363 м в западной части и 316 в восточной части; Пасечнянский - от 200 (скв. 457) до 272,8 м (скв. 6) и 418,8 м (скв. 25) в западной части и от 78,7 (скв. 28) до 323,9 м (скв. 385) и 380,7 м (скв. 478) в восточной части; Любижнянский -155 м; Юго-Западный - 107 м в западной части и 47 м в восточной.

Расчеты, проведенные с использованием принятого положения газоводяного контакта, показали, что на 01.07.1983 г. в Битковское месторождение, за исключением Старунского блока, внедрилось 31,5-10 м воды, что привело к обводнению (в пределах передней кромки фронта вытеснения) около 70 % норового объема пласта. Количество газа в заводненной зоне составляет 17,32 % от начальных и 66,92 % от остаточных запасов. Среднее значение коэффициента остаточной газонасыщенности равно 0,579. Оно выше критического значения, при котором для условий Битковского месторождения остаточный газ приобретает подвижность. Сравнительно высокая газонасыщенность заводненной зоны объясняется как расширением остаточного газа по мере снижения пластового давления, так и наличием в заводненной зоне отдельных газонасыщенных участков, обойденных и отсеченных фронтом воды.

Приведенные данные свидетельствуют о целесообразности проведения мероприятий по вовлечению в разработку остаточных запасов газа.

Для получения высоких значений коэффициента газоотдачи продуктивных пластов при водонапорном режиме необходимо было обеспечить устойчивую работу обводненных скважин. На Битковском месторождении применялись такие методы интенсификации выноса жидкости из газовых скважин, как снижение устьевых давлений путем подключения ряда скважин к конденсатопроводу (скв. 24, 26, 385, 478), общее снижение давления на приеме компрессорной станции, изменение конструкции лифта в отдельных обводнившихся скважинах при проведении ремонтных работ и др.

Помимо рассмотренных выше вариантов разработки ГКМ с нагнетанием воды в опубликованных в разное время работах предлагалась так называемая водогазовая репрессия, целью которой является выравнивание фильтрационных сопротивлений в неоднородном пласте путем блокирования наиболее проницаемых зон пласта и вовлечения в фильтрацию углеводородов из ранее застойных зон. По-видимому, в условиях реального пласта следует опасаться того, что блокироваться будет лишь ближайшая к нагнетательной скважине часть наиболее проницаемых областей коллектора. Для достижения эффекта потребуется нагнетать значительные объемы воды и газа, соответственно следует быть готовыми к тому, что возникнет необходимость - после прорыва воды - эксплуатировать скважины с большим содержанием в продукции воды, т.е. оборудовать скважины глубинными насосами (при глубинах залегания пласта приблизительно до 2500 м) или газлифтными подъемниками (при более значительных глубинах).

Обобщая все изложенное по проблеме разработки газоконденсатных и нефтегазоконденсатных месторождений с нагнетанием воды в пласт или с регулированием фронта ее распространения по пласту, можно сделать следующие выводы.



Искусственное заводнение пласта может быть применено в газоконденсатных залежах, в том числе с нефтяными оторочками, при глубинах приблизительно до 2500 м, и в коллекторах с проницаемостью не ниже 10" м. Наиболее изученным и оправдавшим применение на реальных объектах является барьерное заводнение на газонефтяном контакте, а также в зоне нефтяной оторочки.

Как при разработке с искусственным заводнением, так и при регулировании продвижения фронта воды часть скважин на месторождении должна быть переведена на отбор воды или водогазовой смеси, в том числе на форсированном режиме, что позволит управлять процессом продвижения воды по пласту, обеспечить более полный его охват и снизить потери углеводородов из-за защемления.

Увеличить конечную газоконденсатоотдачу пласта после его искусственного или естественного заводнения возможно, разрабатывая пласт на истощение путем отбора водогазовой смеси.

Очевидно, при разработке залежи с отбором больших объемов воды важно экологически грамотно утилизировать добываемую воду, например использовать ее для закачки в эксплуатируемые нефтяные или отработанные газовые пласты.

Основные проблемы разработки газовых и газоконденсатных месторождений

Текущее состояние и конечная эффективность разработки газовых месторождений определяются тем, насколько совершенна запроектированная система разработки, как она учитывает все особенности геологического строения месторождения и окружающего водонапорного бассейна и насколько эта система реализована практически. В соответствии с геологическими и гидрогеологическими условиями, а также с выбранной технологией разработки проектируется и система контроля.

Факторы и условия, определяющие степень сложности разработки месторождения, под влиянием которых формируется комплекс контролируемых параметров, условно можно разделить на две группы: геологические и гидрогеологические; технологические [22].

К первой группе следует отнести размеры залежи и ее начальные параметры (глубина залегания продуктивного пласта, пластовые давление и температура, запасы газа и конденсата), геологическое строение продуктивного горизонта (многопластовость, неоднородность коллекторских свойств, разрывные нарушения и пр.), тип залежи (пластовая, массивная, водоплавающая), физико-химические свойства пластовых флюидов и т.д. Эта же группа включает характер контакта залежи с окружающим водонапорным бассейном. Особенности этого бассейна - протяженность, проницаемость, гидростатические напоры.

Во вторую группу входят: способ разработки залежи (с поддержанием



давления, на истощение, с консервацией газовой части залежи или нефтяной оторочки и т.д.); стадия разработки (начальная, основная и др.); темп отбора углеводородов из залежи и дебиты отдельных скважин, их рабочие давления и текущее состояние; система вскрытия продуктивного горизонта и размещение скважин на структуре; наличие межпластовых или внутри-пластовых перетоков газа и пр.

Некоторые факторы, такие как взаимодействие соседних залежей, режим разработки и другие, являются общими, но, поскольку возникают они только в процессе разработки месторождений, условно отнесем их к второй группе.

В общем случае система контроля тем сложнее, чем больше упомянутых факторов и условий характерно для данного месторождения, чем больше особенностей и осложнений в его разработке. Крупное по размерам и зтажу газоносности многопластовое месторождение с резко неоднородными коллекторами, с блоковым строением, а также с внедрением пластовых вод требует максимума контролируемых параметров. Небольшое однопластовое газовое месторождение может достаточно эффективно эксплуатироваться и при упрощенной системе контроля.

Система контроля определяется уже на стадии составления технологических схем и проектов опытно-промышленной эксплуатации (ОПЭ) или проектов промышленной разработки.

Особое внимание на всех стадиях разработки газового месторождения следует уделять внедрению подошвенной и законтурной воды в случае водонапорного режима работы пласта [22]. Естественно, активность воды неодинакова на разных стадиях отбора запасов газа из пласта. Обычно сначала наблюдаются признаки только газонапорного режима. По мере снижения давления отмечается все более активное внедрение воды. На завершающей стадии разработки, когда образуются обширные зоны обводнения с защемленным и обойденным газом, темп внедрения воды вновь замедляется из-за возросших фильтрационных сопротивлений. Динамизм процесса обводнения различен в поровых и трещиноватых коллекторах, что диктует необходимость конкретного подхода к системе контроля за обводнением газового пласта. Разработка газоконденсатных месторождений [5, 25, 36, 47, 49] имеет свою специфику.

Помимо всех особенностей разработки, присущих чисто газовым месторождениям, в этом случае возникают сложные проблемы, связанные с отбором углеводородного конденсата. С одной стороны, это те вопросы, которые требуют своего решения при достижении максимально возможной конденсатоотдачи пласта. С другой стороны, это вопросы поддержания или восстановления продуктивности скважин, поскольку наибольшее насыщение порового пространства выпадающим конденсатом происходит именно в призабойных зонах скважин, приводя к более или менее значительному снижению фазовой газопроницаемости.

Если в ходе эксплуатации газоконденсатной залежи к забоям добывающих скважин подступает подошвенная или законтурная вода, то возникает проблема поддержания работоспособности скважин, в продукции которых содержится значительное количество жидкости (углеводородного конденсата и воды). Варианты решения этой проблемы рассмотрены ниже в главе 3.

Особенно сложной является разработка газоконденсатного пласта, характеризующегося низкой проницаемостью пород. Выпадение ретроград-




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 [ 32 ] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217



Яндекс.Метрика