Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 [ 191 ] 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

в разборных конструкциях теплообменников типа «труба в трубе» (рис. ХХП-И, XXII-12) внутренние трубы при повышении температуры могуг удлиняться независимо от наружных. Конструкция аппаратов позволяет осуществлять регулярную механическую очистку внутренней поверхности теплообменных труб от зафязнений, а также при необходимости вынимать трубы для их замены или механической очистки наружной поверхности.

В многопоточных теплообменных аппаратах (см. рис. XXII-12) распределительная камера 1 служит для распределения потока по теплообмен-ным трубам 6. Между решетками теплообменных 2 и кожуховых труб 4 расположена распределительная камера 3 для среды, протекающей по кольцевому пространству в кожуховых трубах 7. Многопоточные теплообменники имеют два хода по внутренним трубам и два по наружным.

В аппарате этого типа легче обеспечить большие, чем в кожухотрубчатых теплообменниках, скорости движения потоков, что позволяет иметь и более высокие коэффициенты теплопередачи и большие значения теплонапряженности поверхности нафева. Кроме того, в аппаратах типа «труба в трубе» легче осуществить противоток между теплообменивающимися средами, что также способствует более высокой эффективности теплообмена.

Поверхность теплообменных аппаратов рассматриваемого типа в меньшей степени подвержена зафязнению продуктами коррозии и механическими примесями, содержащимися в теплообменивающихся средах. Во многих случаях аппараты типа «труба в трубе» работают с более высокими тепловыми показателями, чем кожухотрубчатые теплообменники.

В теплообменных аппаратах разборной конструкции внутренние трубы в ряде случаев с наружной поверхности выполняются с оребрением, позволяющим в 4 -5 раз увеличить их поверхность теплообмена. Оребре-ние внутренних труб используют, как правило, в тех случаях, когда со стороны одной из теплообменивающихся сред трудно обеспечить высокий коэффициент теплоотдачи (движется газ, вязкая жидкость, поток имеет ламинарный характер и т.п.). В этом случае оребрение поверхности со сто-


Рис. ХХП-12. Разборный многопоточный теплообменный аппарат типа «труба в трубе»:

1 - первая распределительная камера; 2 - решетка теплообменных труб; 3 - вторая распределительная камера; 4 - решетка кожуховых труб; 5 - опора; б - теплообменная труба; 7 - кожуховая труба; 8 - поворотная камера; 9 - двойник



роны такой теплообменивающейся среды позволяет значительно увеличить количество переданного тепла.

На рис. XXII-13 приведены варианты оребрения трубы. Ребра можно изготовить в виде штампованных корыт, приваренных контактной сваркой (см. рис. XXII-13, а] или из полос, которые вставляют в канавки, а затем закрепляют обжатием кромок (завальцовка ребер роликами) (см. рис. XXII-13, б). Ребра могут быть получены накаткой (см. рис. XXII-13, в) или выдавливанием из металла трубы (см. рис. XXII-13, г). Применяют также ребристые трубы с приварными шипами (см. рис. XXII-13, д).

Для повышения эффективности теплообмена в трубном пространстве используют методы воздействия на поток устройствами, разрушающими и турбулизирующими движение потока в трубе. Это различного рода турбули-зирующие вставки, варианты исполнения которых представлены на рис.


тттттттт

Рис. XXIM3. Трубы с ребрами:

а - приварными из корыт; 6 - завальцованными; в - накатанными винтовыми; г - выдавленными; д - приварными шиповидными





Рис. ХХП-14. Трубы с турбулизаторами:

а - шнековые завихрители; б - ленточные завихрители; в - диафрагмовые трубы с вертикальными канавками; г - диафрагмовые трубы с наклонными канавками; д - трубы со спиральной проволокой; е - турбулизатор фирмы "Sulzer"



XXII-14. Шнековые (см. XXII-14, а) или ленточные (см. XXII-14, б) завих-рители, установленные по всей длине трубы, обеспечивают закрутку потока, что является одним из эффективных способов интенсификации теплообмена в трубах. Широкое распространение из-за простоты изготовления получили ленточные завихрители. Наиболее эффективная закрутка потока при этом реализуется, если лента вставлена в трубу практически без зазора. Дополнительный эффект в этом случае заключается в том, что винтовая вставка увеличивает поверхность теплообмена и воспринятое ею тепло посредством теплопроводности передается в стенку трубы.

Отечественные мапшностроительные заводы освоили производство диафрагмированных труб, которые изготавливаются путем нанесения на гладкие трубы поперечных вертикальных (см. XXII-14, в] или наклонных спиральных (см. XXII-14, г) канавок. Вместо наклонных канавок можно устанавливать внутри труб турбулизаторы, представляющие собой спиральную проволоку (см. XXII-14, д). На рис. XXII-14, е приведен турбулизатор, применяемый при движении внутри трубы вязких продуктов или тогда, когда при необходимости требуется обеспечить на большой длине небольшое гидравлическое сопротивление.

Недостатками теплообменных аппаратов типа «труба в трубе» по сравнению с кожухотрубчатыми аппаратами являются большие габариты, а также более высокий расход металла на единицу поверхности нагрева.

Теплообменные аппараты типа «труба в трубе» жесткой конструкции, так же как и кожухотрубчатые с неподвижными решетками, используются при сравнительно небольшой разности температур теплообменивающихся сред и при теплообмене незагрязненных жидкостей (частая очистка кольцевого пространства не требуется).

В теплообменных аппаратах типа «труба в трубе» разборной конструкции сравнительно легко очищаются внутренняя и наружная поверхности труб; эти аппараты обладают высоким коэффициентом теплопередачи и являются надежными в эксплуатации.

Кристаллизатор типа «труба в трубе» широко распространен на установках депарафинизации масел. Кристаллизатор предназначен для получения и роста кристаллов, поэтому в аппарате должен быть обеспечен оптимальный тепловой и гидродинамический режим. Температурный напор, скорость движения и продолжительность пребывания охлаждаемого продукта в кристаллизаторе выбирают с таким расчетом, чтобы обеспечить в аппарате оптимальную скорость охлаждения данного продукта, необходимую для роста его кристаллов (быстрое охлаждение обычно сопровождается образованием мелких кристаллов).

В кристаллизаторах по внутренней трубе движется охлаждаемый раствор масла, из которого выкристаллизовываются парафиновые углеводороды, а по кольцевому пространству - охлаждающая среда: для регенеративных кристаллизаторов это холодный раствор депарафинированного масла, для собственно кристаллизаторов - специальный хладагент (испаряющийся аммиак, пропан и др.).

Во избежание отложения парафина на внутренней поверхности трубы кристаллизаторы снабжены вращающимся валом со скребками, удаляющими парафин. Это необходимо, чтобы повысить эффект теплообмена, значительно ухудшающийся вследствие низкого коэффициента теплопроводности слоя парафина.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 [ 191 ] 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



Яндекс.Метрика