Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 [ 92 ] 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

Рис. VIII-2. Кинетические кривые адсорбции при разных температурах


наблюдается также перемещение молекул на поверхности адсорбента от одного активного центра к другому, называемое поверхностной диффузией. Для протекания этого процесса требуется определенная энергия активации; его скорость возрастает с увеличением температуры процесса.

В общем случае твердые частицы адсорбента имеют поры различного размера и формы, поэтому перенос вещества внутри гранул адсорбента может осуществляться одновременно различными способами.

Во многих случаях изменение активности адсорбента во времени удовлетворительно описывается следующим уравнением:

а, = а(1 - е

где а - активность адсорбента в момент времени т и при равновесии (т оо); К„ - константа скорости адсорбции.

Константа скорости адсорбции К„ зависит от температуры и концентрации адсорбируемого компонента.

С увеличением температуры скорость достижения равновесного состояния возрастает, при этом величина активности в условиях равновесия будет меньше, чем при более низкой температуре. Типичные кинетические кривые адсорбции приведены на рис. VIII-2.

При адсорбции сначала поглощаются все компоненты смеси. Однако по достижении состояния насыщения будет происходить обратный процесс, т.е. вытеснение молекул с меньшей активностью. В результате компоненты будут располагаться в слое адсорбента послойно по мере уменьшения их активности. При выделении поглощенных компонентов из адсорбента (десорбция) они будут выходить в обратном порядке. Это явление используется в препаративной и аналитической хроматографии. Общие вопросы теории поглощения вещества твердым адсорбентом рассмотрены в гл. I.

ДЕСОРБЦИЯ

Для выделения поглощенных при адсорбции компонентов с целью направления их на дальнейшую переработку применяется процесс десорбции. В тех случаях, когда в газовом потоке или в растворе, проходящем через слой адсорбента, концентрации (парциальные давления) адсор-



бируемых компонентов ниже равновесных, данные компоненты будут покидать поверхность адсорбента и переходить в газовый (жидкостный) поток, т. е. десорбироваться. Это будет происходить до тех пор, пока не установится новое состояние равновесия.

На промышленных адсорбционных установках необходимо производить регенерацию адсорбента с целью восстановления его адсорбционной способности. Поэтому после окончания стадии адсорбции осуществляется стадия десорбции поглощенных компонентов из адсорбента.

Процесс регенерации адсорбента (десорбция) может быть осуществлен следующими основными способами.

1. Вытеснение поглощенных компонентов с поверхности адсорбента другим веществом, обладающим более высокой адсорбируемостью, с последующим его выделением из адсорбента, которое не вызывает затруднений. Так, например, при адсорбционном разделении смеси углеводородных газов в качестве десорбирующего агента можно использовать водяной пар. При поглощении адсорбентом водяного пара последний вытесняет углеводороды и занимает их место. При этом водяной пар конденсируется, происходит выделение теплоты конденсации, что способствует десорбции, так как повышается температура процесса.

Для полного восстановления активности адсорбента по окончании десорбции углеводородов его необходимо вначале освободить от поглощенной влаги, т.е. высушить, а затем охладить до температуры, при которой протекает процесс адсорбции.

При адсорбционном разделении жидких углеводородных смесей в качестве десорбирующего агента могут быть использованы различные органические жидкости, обладающие более высокой адсорбционной способностью, по сравнению с поглощаемыми компонентами, например, низкомолекулярные ароматические углеводороды (бензол, толуол, ксилолы) или их смеси с полярными растворителями (спиртами, кетонами).

В зависимости от типа применяемого десорбирующего агента используются те или иные методы его удаления из адсорбента.

2. Вытеснение адсорбированных компонентов веществом, обладающим меньшей адсорбируемостью (неполярные растворители). В этом случае процесс десорбции осуществляется за счет нарушения состояния равновесия между адсорбатом и протекающим через слой адсорбента раствором и обусловливается меньшей концентрацией данных компонентов в растворе, чем соответствующая условию равновесия с адсорбатом. Например, при адсорбционном разделении различных нефтепродуктов десорбирующим агентом может быть бензиновая фракция, отличающаяся по температурным пределам кипения от исходной смеси, что позволяет в дальнейшем отделить эту бензиновую фракцию от десорбированных компонентов простой перегонкой или ректификацией.

3. Испарение адсорбированных компонентов при нагреве адсорбента или при понижении общего давления в системе либо парциального давления адсорбированных компонентов. Такой метод десорбции может быть использован при разделении смесей сравнительно летучих компонентов.

4. Окислительная регенерация, при которой адсорбированные компоненты удаляют из адсорбента путем их сжигания. Этот метод применяют в тех случаях, когда адсорбированные вещества отличаются весьма высокой адсорбционной способностью и удаление их изложенными выше способами практически невозможно. К этому способу регенерации адсорбента прибегают в тех случаях, когда адсорбированные компоненты не являются целевыми и их потеря в виде продуктов сгорания допустима по экономическим и экологическим соображениям. Примером может служить удаление асфальто-смолистых веществ с поверхности адсорбента.

Часто процесс регенерации адсорбента осуществляется комбинированием рассмотренных выше методов. Тот или иной метод регенерации адсорбента выбирают в зависимости от конкретных условий, свойств разделяемой смеси, масштаба производства, экономики процесса, выполнения условий охраны окружающей среды.

Десорбция облегчается с повышением температуры и увеличением расхода десорбирующего агента. Десорбция газообразных и легколетучих компонентов облегчается при понижении давления в системе. Экономичность промышленного адсорбционного разделения в значительной степени зависит от режима процесса регенерации адсорбента, так как существенная часть энергозатрат процесса в целом приходится на стадию десорбции (расход тепла на отгонку растворителя, нагрев адсорбента до температуры проведения процесса десорбции, расход водяного пара или газа для удале-



ния растворителя из слоя адсорбента после десорбции, расход энергии на подачу воздуха в случае окислительной регенерации, затраты тепла на сушку адсорбента и т.д.).

Расход десорбирующего агента - водяного пара, растворителя и т.п. зависит от адсорбционной способности десорбируемых компонентов и растворителей, используемых в процессе, температуры при десорбции и полноты извлечения десорбируемых компонентов.

Например, при разделении смесей газообразных углеводородов на активированном yi ле расход неконденсирующегося водяного пара составляет до 2,5 кг на 1 кг десорбируемого вещества. Конденсируемый водяной пар расходуется на нагрев адсорбента, изоляции адсорбера и его корпуса, а также других элементов системы. Этот пар конденсируется, и 80-90 % образующегося конденсата остается в угле.

При использовании неполярных растворителей температура десорбции равна 80- 150 °С, а расход растворителя составляет lOO-i-400 % массы адсорбента.

При работе с полярными растворителями десорбция протекает при температурах 40- 80 °С, а расход растворителя составляет 50+200 % массы адсорбента.

Время, необходимое для осуществления стадии десорбции, значительно меньше, чем время, затрачиваемое на стадию адсорбции, вследствие того, что этот процесс протекает при более высокой температуре и меньшей вязкости среды.

В результате десорбции адсорбционная способность адсорбента может восстанавливаться полностью или частично в зависимости от адсорбционной способности десорбируемых компонентов, выбранного метода десорбции, рабочих параметров процесса. В ряде случаев оправдано неполное восстановление активности адсорбента, так как при этом сокращаются эксплуатационные затраты.

Зависимость активности адсорбента а (по отношению к первоначальной его активности Qq) от числа регенераций N представлена на рис. VIII-3. Приведенная кривая показывает, что наибольшее снижение активности адсорбента наблюдается после первой регенерации. В дальнейшем активность снижается постепенно и в меньшей степени. Такой характер восстановления активности адсорбента объясняется тем, что при регенерации часть его активной поверхности остается занятой адсорбированными компонентами и в дальнейшем исключается из участия в процессе адсорбции.

При использовании в качестве десорбирующих агентов полярных растворителей активность адсорбента восстанавливается наиболее полно.

При окислительной регенерации активность адсорбента восстанавли-

Рвс. VIII-3. Характер восстановления активности адсорбента при регенерациях





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 [ 92 ] 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



Яндекс.Метрика