Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 [ 248 ] 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

Рис. 20.20. Принципиальная схема электробура

полнена сухим изоляционным маслом. От внешней среды полость двигателя изолирована верхним 4 и нижним 8 сальниками. В сальники подается машинное масло. Для компенсации утечек масла через сальники и поддержания некоторого избыточного давления внутри двигателя, препятствующего попаданию промывочной жидкости внутрь, в верхней части электробура в лубрикаторной головке размещены лубрикаторы сальника 2 и двигателя 3. Внутри верхнего переводника проходит кабельный ввод от контактного стержня 1 до обмотки статора. Для восприятия веса вала в нижней его части над нижним сальником установлен упорный шариковый подшипник.

Снизу к двигателю присоединен шпиндель. В шпинделе находится многорядная осевая опора на шариковых подшипниках 10. Полый вал центрируется в корпусе с помощью роликовых и шариковых подшипников. Вал шпинделя соединен с валом двигателя посредством соединительной зубчатой муфты 9; в месте соединения валов находится шарнирное уплотнение для изоляции внутреннего пространства от промывочной жидкости, поступающей к забою по внутреннему каналу в валу двигателя и шпинделя. Осевые нагрузки на породоразрушаю-щий инструмент полностью воспринимаются осевой опорой шпинделя и на вал двигателя не передаются. В нижней части шпинделя помещено сальниковое уплотнение 12. Шпиндель заполнен густым машинным маслом и оснащен лубрикатором 11, который создает избыточное давление за счет усилия сжатой пружины, давящей на поршень. Под поршнем находится резерв масла, восполняющий его потери из шпинделя.

На рис. 20.21 приведена типичная конструкция электробура.

Асинхронные двигатели для электробуров имеют жесткую характеристику, т.е. диапазон изменения их частоты вращения довольно ограничен. Ее изменение зависит от скольжения ротора относительно поля статора:

п = Лп(1 - S),

где n - частота вращения ротора двигателя; пп = 60 f/p - частота вращения магнитного поля статора (f - частота тока; p = 6, 8, 10 - число пар полюсов); S - скольжение (при нормальной нагрузке скольжение S = 8-12 %).

Вращающий момент (Н-м) асинхронного двигателя электробура может быть подсчитан по формуле




Рис. 20.21. Конструкция электробура:

1 - контактный стержень; 2 - переводник; 3 - резиновая диафрагма компенсатора двигателя; 4, 30 - поршень компенсатора двигателя и шпинделя соответственно; 5, 31 - пружина; б - цилиндр компенсатора; 7 - соединительный корпус двигателя; 8, 19 - верхний и нижний сальники двигателя; 9 - верхний клапан двигателя; 10, 17 - верхняя и нижняя части обмотки статора; 11 - вал двигателя; 12 - пакет магнитопроводной стали статора; 13 - корпус статора; 14 - промежуточный пакет статора из немагнитного материала; 15, 18 - промежуточный и нижний подшипники двигателя; 1б - секция ротора двигателя; 20 - клапан; 21 - нижний соединительный корпус; 22 - корпус шпинделя; 23 - втулка; 24 - зубчатая муфта; 25 - клапан; 2б, 32 - верхний и нижний радиальные подшипники; 27 - упорный подшипник; 28, 29 - наружная и внутренняя обоймы распределителя осевой нагрузки; 33 - пробка; 34 - сальник шпинделя; 35 - вал шпинделя; 3б - переводник на долото



m1 R2 /S

2nf [(R1 + C1R2/ S) + (X1 + C1X 2)2]

где m1 - число фаз обмотки статора; U1 - напряжение на зажимах двигателя, В; R2 - приведенное омическое сопротивление ротора, Ом; R1 - омическое сопротивление фазы обмотки статора, Ом; x1 - индуктивное сопротивление обмотки статора, Ом; x 2 - приведенное индуктивное сопротивление ротора, Ом; с1 - коэффициент, зависящий от напряжения на клеммах двигателя.

Как следует из формулы, вращающий момент двигателя прямо пропорционален квадрату напряжения на его входе. Снижение напряжения приводит к заметному падению вращающего момента. В связи с этим необходимо учитывать потери напряжения в токоподводе от поверхности к двигателю, а падение напряжения при кратковременных перегрузках двигателя рекомендуется компенсировать некоторым повышением напряжения на входе двигателя на 5-10 % номинального значения. Номинальное напряжение на клеммах электробуров составляет 1000-1200 В в зависимости от типа двигателя.

Характер зависимости вращающего момента двигателя МАП1Д-25-617/10 от частоты вращения вала двигателя приведен на рис. 20.22. На графике вращающего момента правая ветвь от точки максимума является областью устойчивой работы (рабочая область), левая - областью неустойчивой работы. При пуске двигателя заметно снижается вращающий момент (зона провала) в процессе выхода на режим. В зоне провала вращающий момент может снизиться до 60 % номинального. Но так как двигатель пускают с малой нагрузкой, а маховой момент вращающихся деталей и инструмента мал, то даже при уменьшенном моменте двигатель быстро увеличивает частоту вращения вала.

КПД двигателя при номинальной нагрузке составляет 66-68 %. Поскольку механические потери в шпинделе на опорах качения сравнительно невелики, характеристику электробура можно принимать по характеристике двигателя.

К забойному двигателю электроэнергия подводится по секционированному кабелю, помещенному внутри бурильной колонны. Токоподвод может осуществляться по трех- или двухжильному кабелю. В последнем случае в качестве третьего провода используют бурильную колонну. Эта система питания носит название «два провода - земля» (сокращенно ДПЗ).

Система ДПЗ позволяет увеличить площадь сечения проходного канала в бурильной колонне и таким образом способствует снижению потерь напора при циркуляции промывочной жидкости по бурильной колонне.

Каждую кабельную секцию разме-


Рис. 20.22.

617/10

Характеристика двигателя МАП1Д-25-




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 [ 248 ] 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332



Яндекс.Метрика