Главная Переработка нефти и газа Действие других факторов (температура, противодавление, качество смазочной добавки к буровому раствору, искривление ствола скважины, тип бурового раствора, проницаемость породы и фильтрационной корки, характер циркуляции) или не исследовали, или исследовали недостаточно, хотя в возникновении прихватов они (в ряде случаев) играют решающую роль. Значительный объем исследований проведен А.К. Самотоем. К наиболее распространенным прихватам он относит: у стенки скважины под действием перепада давления; вследствие заклинивания низа колонн при их движении в скважине; в результате желообразования; вследствие сальникообразования; из-за нарушения устойчивого состояния пород; вследствие заклинивания колонн посторонними предметами; вследствие нарушения режима промывки; по причине заклинивания породоразрушающего инструмента; испытателей пластов при опробовании скважин в процессе бурения. Способы ликвидации прихватов очень разнообразны. В южных районах страны с помощью установки нефтяных ванн ликвидируют 40-80 % прихватов, возникших вследствие действия перепада давления, и 20-40 % прихватов, возникших в результате заклинивания колонн в суженной части ствола скважины. Ликвидировать прихваты, возникшие вследствие обвала пород, чрезвычайно трудно, и они часто переходят в категорию аварий, так как приходится или фрезеровать прихваченную часть колонны, или устанавливать цементный мост и забуривать новый ствол. Способы предупреждения и ликвидации прихватов Профилактика предусматривает: использование рациональных конструкций скважин; применение буровых растворов, свойства которых способствуют предупреждению прихвата колонны и обеспечению устойчивого состояния пород, слагающих стенку скважин; нормирование превышения гидростатического давления над пластовым, недопущение неплани-руемого искривления ствола скважины; предупреждение образования желобов и ликвидацию желобных выработок; применение противоприхват-ных компоновок низа бурильных колонн; использование специальных приспособлений и устройств, предупреждающих заклинивание колонны труб в скважине в процессе бурения и при спускоподъемных операциях. Наименьшая вероятность прихвата у инструментов, имеющих меньший диаметр и длину (центратор, наддолотный калибратор, пакеры и др.). При выборе рациональной конструкции скважины необходимо строго придерживаться следующих основных требований: не допускать совместное вскрытие горизонтов с различными градиентами пластовых давлений; своевременно перекрывать опасный участок ствола промежуточной колонной или хвостовиком. Нарушение этих требований приводит к возникновению прихватов под действием перепада давления, ликвидация которых на большой глубине не всегда возможна. Способствуют устранению осложнений, приводящих к прихватам, и многокомпонентные буровые растворы, сохраняющие устойчивость пород, слагающих стенку скважин. Рекомендовано: предупреждать термическую и термосолевую деструкции бурового раствора, кольматировать высокопро- ницаемые породы, уменьшать колебания гидродинамического давления, формировать тонкую эластичную фильтрационную корку с низкими показателями фрикционных свойств и улучшать буримость пород. Проблема сохранения устойчивости пород, слагающих стенки скважин, пока еще не полностью решена. Применение известковых, гипсовых, малосиликатных с полимерными добавками при минимальной водоотдаче, с добавками поваренной соли и хлористого кальция, эмульсионных высокополимерных на неводной основе буровых растворов дает удовлетворительные результаты только в некоторых условиях, так как причины разупрочнения пород неодинаковы. Противоприхватными свойствами обладают буровые растворы на углеводородной основе и обращенные эмульсии. Применение таких растворов благоприятствует улучшению буримости пород. Однако высокая стоимость, сложность регулирования их свойств в условиях высоких температур и давлений при агрессивной среде, дефицитность некоторых компонентов, повышенная пожароопасность сдерживают широкое использование этих буровых растворов. Одна из наиболее сложных проблем при бурении - предотвращение коагуляции буровых растворов под действием высоких температур, сопровождающаяся ростом водоотдачи и интенсивным структурообразованием, что повышает прихватоопасность. Осложнения в скважинах, вызываемые термоокислительной деструкцией бурового раствора и являющиеся потенциально возможными причинами прихватов, удается предотвратить обработкой бурового раствора специальными термостойкими защитными реагентами. Считается, что УЩР и КССБ термостойки при отсутствии солевой агрессии. Крахмал и КМЦ термостойки до температуры соответственно 100 и 120-150 °С (КМЦ - в зависимости от степени полимеризации). Акриловые сополимеры термостойки при более высоких температурах, что позволяет иметь низкую водоотдачу солевых растворов при температуре 180-200 °С, пресных - до 250 °С (гипан, метас). Однако до сих пор для условий полиминеральной агрессии и высокой температуре (200-300 °С) проблема регулирования свойств бурового раствора остается нерешенной. Предотвратить прихваты в интервалах залеганий проницаемых пород можно их кольматацией, так как существующие механические и физико-химические способы кольматации просты и с успехом применяются в различных условиях (М.Р. Мавлютов). Время выравнивания давления в приствольной зоне и фильтрационной корке до значения гидростатического, при прочих равных условиях, зависит от проницаемости пласта и заполняющего его флюида. По мере увеличения степени кольматации проницаемых пород процесс выравнивания давления интенсифицируется, и вероятность возникновения прихвата в кольматированном участке ствола при действии гидростатического давления резко уменьшается. При создании больших гидростатических давлений значительно возрастает опасность возникновения прихвата. Так, ранее пробуренный участок ствола скважины, представленный проницаемыми породами, становится прихватоопасным с увеличением перепада давления, вызванного необходимостью повышения гидростатического давления для предупреждения возникновения нефте-, газо-, водопроявлений или обвало-образований. Свойства бурового раствора не должны способствовать возникнове- нию больших колебаний гидродинамического давления в стволе скважины в процессе циркуляции, при ее восстановлении и спускоподъемных операциях. Для этого реологические свойства буровых растворов должны быть по возможности минимальными и регулируемыми с помощью реагентов -понизителей вязкости и структурообразователей. На возникновение прихватов в значительной степени влияют структурно-механические свойства фильтрационных пород (адгезионная способность, сопротивление сдвигу, прочность), зависящие от содержания твердой фазы в буровом растворе и ее состава, вида химической обработки и смазочной способности раствора. Фрикционные свойства фильтрационных корок снижают применением высококачественных глинопорошков и утяжелителей, улучшением очистки раствора. Фильтрационные корки должны быть тонкими, эластичными, мало- или непроницаемыми, с минимальными силами адгезии и коэффициентом трения. Наименьшими показателями фрикционных свойств обладают фильтрационные корки, образовавшиеся из растворов, содержащих нефтепродукты с длинными углеводородными цепями (окисленный петролатум, синтетические жирные кислоты и т.п.). Самая распространенная смазочная добавка на промыслах в настоящее время - сырая нефть, рациональное содержание которой в буровом растворе в зависимости от его плотности и температуры окружающей среды колеблется в пределах 10-18 %. Расчеты показывают, что в зависимости от геолого-технических условий бурения расход нефти для предупреждения прихватов составляет 0,05 - 0,10 т на 1 м проходки. Эффективность применения нефти как смазочной добавки при высокой температуре резко снижается, поэтому целесообразнее использовать другие, менее дорогие и более эффективные продукты, например смеси гудронов (СГ), омыленные жирные кислоты (ОЖК), поверхностно-активные вещества. Строгие требования должны предъявляться к выполнению условия нормирования превышения гидростатического давления в скважине над пластовым. Как правило, вероятность возникновения прихватов возрастает с увеличением произвольного искривления скважины. Характер искривления скважин, бурящихся в различных геолого-технических условиях, различен и зависит от совместного действия многих факторов. Используются жесткие компоновки низа бурильных колонн и регулирование осевых нагрузок на долото в зависимости от угла падения пластов и перемежаемости пород по твердости; внедряется контроль за искривлением скважин; применяются для бурения скважин большого диаметра реактивно-турбинный способ бурения (РТБ) и долотный бур (БД). Следует обратить особое внимание на возможность увеличения прихватов в горизонтальном бурении. Наиболее серьезные осложнения, наблюдаемые при проводке скважин (особенно искривленных и наклонно направленных), - затяжки и посадки бурильного инструмента в участках ствола с желобными выработками, которые важно своевременно обнаружить и нейтрализовать. Желобообразование можно обнаружить и оценить профилеметрией, а нейтрализовать - проработкой его интервалов специальными компоновками бурильного инструмента и взрывом в них гибких торпед. Для профиле-метрии зон желобообразования необходим надежный многоточечный (шес- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 [ 69 ] 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
||