Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [ 46 ] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

буровой раствор обычно разбавляют водой для того, чтобы уменьшить вязкость и таким образом улучшить условия разделения твердой фазы по массе.

С помощью агрегата можно выполнять следующие функции:

1) тонкую очистку раствора от шлама - для этого сепаратор устанавливают в качестве четвертой ступени очистки после илоотделителя; часть бурового раствора, очищенного на блоке гидроциклонов илоотделителя, подают в сепаратор и таким образом удаляют из раствора частицы шлама размером более 4 мкм;

2) регенерацию утяжелителя - в процессе циркуляции или спускоподъемных операций сепаратор включают в работу и из избыточной части раствора извлекают пульпу утяжелителя; эту пульпу затем собирают в запасную емкость и при необходимости добавляют в рабочий объем бурового раствора;

3) регулирование содержания и состава твердой фазы - это основная технологическая задача, для решения которой строго контролируются подача раствора и режим работы агрегата; утяжеленная пульпа, твердая фаза которой состоит в основном из барита, возвращается частично или полностью в циркуляционную систему, а облегченная часть раствора в случае его обогащения тонкодисперсными частицами шлама сбрасывается в отстойный амбар; эта часть потока частично используется для разбавления рабочего объема бурового раствора;

4) сгущение пульпы из песков и илов. Иногда сепаратор используют для дополнительного сгущения пульпы из песков и илов, собираемых из нижних насадок гидроциклонных шламоотделителей; это позволяет сократить потери бурового раствора при использовании многоступенчатой гидроциклонной очистки; дополнительно извлеченный из песков и илов буровой раствор вместе с дорогостоящими реагентами возвращается в циркуляционную систему, а шлам сбрасывается в отвал.

Современная центрифуга при нормальном режиме работы способна обрабатывать до 1,5 л/с бурового раствора. На форсированном режиме допускается подача до 2 л/с; рабочий диапазон пропускной способности 45 - 75 л/мин.

Центрифуга - высокоэффективный аппарат для разделения суспензий, но и она имеет недостатки: конструкция ее сложна и требуется высокая квалификация обслуживающего персонала. Поэтому наиболее целесообразно аппараты использовать кратковременно. Наличие многочисленных вращающихся деталей, абразивная рабочая среда, высокие частоты вращения (1800 - 2300 об/мин), сальниковые уплотнения, винтовые насосы - все это требует тщательного ухода и высокой культуры эксплуатации.

Центрифуга в 10-11 раз дороже песко- и илоотделителей.

При обработке утяжеленного бурового раствора перед подачей в центрифугу его необходимо разбавлять водой. В противном случае потери утяжелителя будут существенными. Современные условия эксплуатации центрифуг таковы, что каждые один-два объема бурового раствора надо разбавлять одним объемом воды. Поэтому, во-первых, облегченную часть раствора вместе с реагентами приходится выбрасывать, а во-вторых, возникает необходимость в специальной системе оборотного водоснабжения и захоронении (или нейтрализации) сбрасываемого осветленного продукта. Все это свидетельствует о необходимости строгого анализа границ



определенных геолого-технических усло-

применимости центрифуги виях бурения скважин.

В практике бурения скважин для регулирования содержания и состава твердой фазы широко используются шнековые центрифуги (рис. 6.22). Шнек вращается с определенной скоростью и транспортирует скапливающуюся у стенок корпуса сгущенную пульпу к разгрузочному устройству. Такой тип центрифуги позволяет почти полностью отделять от барита жидкую фазу и поэтому чаще всего используется для регенерации утяжелителя из бурового раствора. Режим работы этих центрифуг регулируют подачей раствора на обработку, степенью его разбавления водой, частотой вращения ротора.

Однако в связи с высокой стоимостью и сложностью технического обслуживания центрифугу не всегда целесообразно применять. Выгодней и проще использовать гидроциклонные аппараты. Сущность работы такого аппарата в режиме регенерации утяжелителя состоит в том, что разбавленный водой буровой раствор поступает по тангенциальному вводу в гидроциклон, в центробежном поле которого происходит отделение барита от раствора. Баритовая пульпа возвращается в буровой раствор или сливается в специальную емкость, а облегченная водоглини-стая смесь через верхний слив гидроциклона сбрасывается в отстойник. Вода в отстойнике отделяется от глинистых частиц и может повторно использоваться для разбавления новых порций подаваемого на обработку бурового раствора.

Такие аппараты, обычно называемые гидроциклонными глиноотде-лителями, достаточно эффективны. Они способны регенерировать до 80 - 90 % барита при степени разбавления бурового раствора, равной четырем. Значительное разбавление раствора водой (соотношение воды: раствор составляет 4:1) является главным недостатком гидроциклонных глиноотделителей. Однако они могут использоваться с хорошей экономической эффективностью.

В последние годы замечается тенденция к использованию для регу-


Рис. 6.22. Схема шнековой центрифуги для регенерации утяжелителя:

I - подача раствора; II - выход утяжеленной пульпы; III - слив раствора



лирования содержания и состава твердой фазы буровых растворов специальных реагентов - флокулянтов - в сочетании с известными и широко применяемыми средствами очистки: отстойниками, виброситами и гидроциклонными шламоотделителями. Принцип действия флокулянтов основан на том, что частицы твердой фазы под действием этого реагента агрегируются в так называемые флокул! и превращаются в сравнительно большие по размеру хлопья, которые можно удалить с помощью обычных средств очистки раствора от шлама.

Флокулянты бывают общего и селективного действия. Первые флоку-лируют твердую фазу растворов независимо от ее природы и дисперсного состава, вторые агрегируют лишь частицы определенного материала и дисперсного состава.

6.6. ТЕХНОЛОГИЯ ХИМИЧЕСКОЙ ОБРАБОТКИ БУРОВОГО РАСТВОРА

По мере углубления ствола скважины изменяются геологические условия разреза. Это приводит к необходимости изменения некоторых параметров бурового раствора. Если надо изменить реологические или фильтрационные характеристики бурового раствора, то его обрабатывают различными химическими реагентами.

Химическую обработку бурового раствора проводят в процессе промывки скважины либо в перерывах между долблениями. В первом случае химические реагенты вводят в начале циркуляционной системы. Во втором случае химические реагенты подают в емкость циркуляционной системы.

Предварительно химические реагенты или их смесь готовят в специальных устройствах: глино- и гидромешалках, блоках химической обработки, гидросмесителях и др.

Технология процесса химической обработки включает, как правило, гидравлические и механические перемешиватели, подпорные и шламовые насосы, а иногда - даже буровые насосы. При обработке во время циркуляции химические реагенты вводят равномерно в течение одного или двух циклов циркуляции. При отсутствии циркуляции буровой раствор обрабатывают поочередно в каждой емкости циркуляционной системы.

С целью механизации химической обработки бурового раствора создан специальный блок химической обработки бурового раствора (рис. 6.23). Он состоит из бака 1, химического насоса 2, гидросмесителя 6, устройства для разрыва мешков 4 и 9, манифольдов. На основании 5 размещен резервуар 3 для жидких химических реагентов. На втором ярусе расположена площадка для хранения затаренного в мешки порошкообразного реагента.

В нижней части основания установлен химический насос 2, который обвязан с баком 1 и резервуаром для химических реагентов 3. На верхней площадке размещают эжекторный гидросмеситель 6, около которого расположен стол с ножом для разрезания мешков. Такой же стол смонтирован у химического насоса. Гидросмеситель соединен трубопроводом 10 с блоком приготовления бурового раствора (БПР). Основание 8 имеет откидной борт 7.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [ 46 ] 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332



Яндекс.Метрика