Главная Переработка нефти и газа Отсюда следует, что даже если мозг бесконечно сложен, то при Т0 = -2 на обработку сигнала всеми его уровнями потребуется всего лишь n=0 n=02 1-- Вот почему человек, находясь в подчас сложнейшей ситуации, успевает почти мгновенно обработать поступающую информацию и принять адекватное решение. Наблюдение изображений фракталов успокаивает и вызывает чувство облегчения и уверенности, что связано с постоянством формы фрактала при его увеличении. Точно так же действует постоянный ритм церковного богослужения или рефрен колыбельной песни. Музыкальные произведения в основе своей также фрактальны, поскольку правила их создания аналогичны правилам, которые с помощью повторяющихся предписаний позволяют творить фрактальные образы. Такие гениальные музыканты, как Моцарт или Бах, находят свои собственные правила, шестым чувством определяя тот единственный момент, когда необходимо перейти от старых правил к новым [14]. Фрактальные структуры, благодаря своей избыточности и нерегулярности, являются устойчивыми системами и хорошо противостоят повреждениям. Следовательно, и в технологических системах следует использовать или целенаправленно создавать фрактальные объекты в целях увеличения прочности и надежности конструкций и интенсивности процессов. Исключительная эффективность функционирования человеческого мозга также может быть объяснена фрактальностью организации процессов переработки информации. Покажем это на примере фрактальной модели мозга [19], представляющей собой квадрат, содержащий один прямоугольник и два квадрата вдвое меньшего размера, масштабно-инвариантных первому квадрату (рис. 1.6). Входной сигнал, подведенный к большому квадрату, идет к первому прямоугольнику и обрабатывается здесь за время Т0. Затем результаты обработки поступают на меньшие квадраты, прямоугольники которых отсылают их к еще меньшим квадратам, и т. д. Предположив, что для обработки сигнала в модулях вдвое меньшего размера требуется вдвое меньше времени, получим скейлинговый закон Рис. 1.6. Фрактальная модель мозга Отметим, что самоподобной в каком-то смысле является и история науки. Американский методолог Джеральд Холтон показал [13], что научная мысль из века в век ходит по одним и тем же кругам, рассматривая (на все более высоком уровне) одни и те же вечные темы: тему первичных частиц, тему происхождения сложных форм из простых, тему самопроизвольного появления новшеств и т. д. По этому поводу С. В. Мейен отметил: «Будь это шахматная партия, любой арбитр давно бы признал ничью ввиду повторения ходов». Одной из таких вечных тем является и само понятие фрактальности. Ведь еще Лейбниц в «Монадологии» писал: «Всякую часть материи можно представить наподобие сада, полного растений, и пруда, полного рыб. Но каждая ветвь растения, каждый член животного, каждая капля его соков есть опять такой же сад или такой же пруд» [13]. 1.2. Детерминированный хаос Совершенно случайный рисунок -увы, также и наиболее скучный... Непредсказуемость (случайность) желательна с точки зрения разнообразия или неожиданности, но если мы хотим, чтобы рисунок выглядел привлекательно, необходима некоторая упорядоченность. Дж. Пирс Изучение ньютоновской динамики приучило нас к мысли о том, что если заданы силы, действующие между частицами, а также начальные положения и скорости частиц, то уравнения движения позволяют предсказать развитие системы с любой степенью точности для любого сколь угодно позднего момента времени. Это убеждение укрепляется удивительной точностью, с которой механика предсказывает движение планет, моменты солнечных затмений, рассчитывает движение космических ракет. Случайность, наблюдаемую в реальном мире, мы обычно связываем с внешними шумами, наличием очень большого числа степеней свободы или же с квантовыми эффектами. Настоящим потрясением для научного мира было осознание того, что неупорядоченные, непредсказуемые движения возможны в детерминированных динамических системах, т. е. объектах, эволюция которых описывается некоторой системой дифференциальных или разностных уравнений, задающих правило однозначного определения будущего, исходя из заданных начальных условий [2-5, 15, 20, 21]. Хаотическое состояние, в котором могут находиться динамические системы без источников случайных шумов, получило название детерминированного (или динамического) хаоса. Детерминированный хаос отличается от обычного (или шумового) хаоса, понимаемого как состояние полной дезорганизации. Хаос в динамических системах относится к ограниченной случайности, им можно управлять и даже прогнозировать на короткие промежутки времени вперед. Различие между этими двумя видами хаоса подобно различию между шумом в переполненном случайными людьми зале и шумом, создаваемым музыкантами оркестра, готовящимися к началу выступления. Достаточно одного жеста дирижера, чтобы шум в оркестровой яме затих, в то время как овладеть вниманием толпы практически невозможно. Следует отметить, что необходимым условием возникновения хаотического движения является наличие особой нелинейности. 0 1 2 3 4 5 6 [ 7 ] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
||